
QUANTUM COMPUTING [WITH QISKIT]

Quantum Computing Trend From Google Trends In The Past 12 Months | Monthly

Search Volume ~100K EST.

Figure 1.1: Quantum Computer trend as of Jan. 2024

Analysis: The uptick in trend activity we see in December 2023 for ‘Quantum Computing’

foreshadows an increase in the popularity of quantum computing in 2024.

This field has the capability to completely revolutionize the way we do anything online,

including SEO and Digital Marketing all together.

https://trends.google.com/

Quantum computing is an obviously complex field. Just look at the map on quantum

computing below!

Figure 1.2: Map of Quantum computing by Domain Of Science – available at

https://store.dftba.com/collections/domain-of-science/products/map-of-quantum-

computing

First up, jump into the world of quantum computing using Qiskit, a popular open-source

quantum applying computing framework. If you’re new to or looking to get into

Quantum Computing, this guide along with Qiskit can provide you with a strong

foundation.

https://store.dftba.com/collections/domain-of-science/products/map-of-quantum-computing
https://store.dftba.com/collections/domain-of-science/products/map-of-quantum-computing
https://qiskit.org/

Qiskit is an open-source quantum computing software development framework. It's

designed to facilitate writing quantum computing experiments, programs, and

applications. Created by IBM, it is intended to make quantum computing accessible to

everyone, from researchers and developers to students and enthusiasts. Here are some

key points about Qiskit:

1. Programming Language: Qiskit is primarily written in Python, making it

accessible to a wide range of programmers, as Python is known for its ease of use

and readability.

2. Quantum Circuits and Algorithms: Users can build quantum circuits and run

them on various backends, including simulators and real quantum computers

provided by IBM Quantum Experience.

3. Components: It includes several components, like Terra for creating quantum

programs, Aer for simulating quantum circuits, Ignis for quantum error

correction, and Aqua for building quantum algorithms.

4. Educational Resource: Qiskit also serves as an educational resource, offering

tutorials and documentation to help users understand quantum computing

concepts.

5. Community and Research: Being open-source, it has a growing community of

users and contributors. It's widely used in both academic and industry research

for experimenting with quantum algorithms and applications.

This powerful software is a part of a broader movement to make quantum computing

more accessible and to develop a quantum-ready workforce as this field continues to

evolve.

General Quantum Computing:

• Market size and growth:

o The global quantum computing market is expected to reach $8.6 billion by
2027, growing at a CAGR of 34.1% (Statista).

o Another estimate predicts the market to hit $125 billion by 2030, with a
staggering CAGR of 36.4% (Precedence Research).

• Adoption rate:

o Currently, 30% of organizations have adopted some form of quantum
technology (Statista).

o Leading sectors for adoption include telecoms, public sector, energy, and
life sciences.

• Investment:

o The global investment in quantum computing reached $2.7 billion in
2022 (TechCrunch).

o Major players like IBM, Google, and Amazon are heavily invested in this
field.

Qiskit Specific:

• User base:

o As of November 2023, Qiskit boasts over 500,000 registered users (IBM
Quantum GitHub repository).

o This signifies a large and active developer community.

• Downloads and contributions:

o Qiskit has been downloaded over 10 million times (IBM Quantum GitHub
repository).

o This indicates widespread adoption and usage.

• Publications and citations:

o Over 2,000 research papers mention Qiskit (IBM Quantum GitHub
repository).

o This highlights the platform's impact on scientific research.

• Community engagement:

o Qiskit has vibrant online communities and forums with active discussions
and support.

Remember: These are just a few statistics, and the field of quantum computing is
constantly evolving. For the latest updates, you can visit:

• IBM Quantum website: https://quantum-computing.ibm.com/

• Qiskit website: https://qiskit.org/

• Qiskit GitHub repository: https://github.com/Qiskit

The code snippet below demonstrates the creation of a simple quantum circuit,

quantum gates, and executing the circuit on a quantum simulator.

python

from qiskit import QuantumCircuit, Aer, transpile, assemble

Create a quantum circuit

qc = QuantumCircuit(2, 2)

Apply Hadamard gate

qc.h(0)

Apply CNOT gate

qc.cx(0, 1)

Measure qubits

qc.measure([0, 1], [0, 1])

Execute the circuit on a simulator

simulator = Aer.get_backend('qasm_simulator')

result = execute(qc, simulator).result()

Get and print the counts

counts = result.get_counts(qc)

print(counts)

https://quantum-computing.ibm.com/
https://qiskit.org/
https://github.com/Qiskit

1.1 QUANTUM LOGIC GATES AND CIRCUITS

In this section, glance some of the fundamentals of quantum (logic) gates and circuits.

Understand how quantum bits (qubits) can be manipulated using operations like

Hadamard gates and controlled-X gates to perform quantum computations.

1.1.1 QUANTUM LOGIC GATES

Quantum logic gates are analogous to classical logic gates but operate on quantum bits

or qubits. They are represented as matrices that transform the state of a qubit. Here are

some common quantum gates:

1. Hadamard Gate (H Gate): The Hadamard gate creates superposition by rotating

the qubit's state. It's a fundamental gate in quantum computing.

Code Example (Qiskit in Python):

python

from qiskit import QuantumCircuit, Aer, execute

Create a quantum circuit with one qubit

circuit = QuantumCircuit(1)

Apply Hadamard gate to the qubit

circuit.h(0)

Simulate the circuit

simulator = Aer.get_backend('qasm_simulator')

result = execute(circuit, simulator).result()

Get and print the results

counts = result.get_counts(circuit)

print(counts)

2. Pauli-X Gate (X Gate): Also known as the "bit-flip" gate, it flips the state of a

qubit.

Code Example (Qiskit in Python):

python

from qiskit import QuantumCircuit, Aer, execute

Create a quantum circuit with one qubit

circuit = QuantumCircuit(1)

Apply Pauli-X gate to the qubit

circuit.x(0)

Simulate the circuit

simulator = Aer.get_backend('qasm_simulator')

result = execute(circuit, simulator).result()

Get and print the results

counts = result.get_counts(circuit)

print(counts)

Learn more about Quantum Logic Gates by visiting the Wikipedia page on Quantum

Logic Gates.

1.1.2 QUANTUM CIRCUITS

Quantum circuits are constructed by applying a sequence of quantum gates to qubits.

These gates manipulate the quantum states, and the final state represents the result of the

quantum computation.

https://en.wikipedia.org/wiki/Quantum_logic_gate
https://en.wikipedia.org/wiki/Quantum_logic_gate

Here's an example of a simple quantum circuit using Qiskit:

python

from qiskit import QuantumCircuit, Aer, execute

Create a quantum circuit with two qubits

circuit = QuantumCircuit(2)

Apply Hadamard gate to the first qubit

circuit.h(0)

Apply CNOT gate (controlled-X gate) with the first qubit as control and the

second qubit as target

circuit.cx(0, 1)

Measure qubits

circuit.measure_all()

Simulate the circuit

simulator = Aer.get_backend('qasm_simulator')

result = execute(circuit, simulator).result()

Get and print the results

counts = result.get_counts(circuit)

print(counts)

In this example, we create a quantum circuit with two qubits, apply a Hadamard gate to

the first qubit, and then apply a CNOT gate to entangle the qubits. Finally, we measure

the qubits to obtain results.

Understanding quantum gates and circuits is essential for building and simulating

quantum algorithms. As you explore quantum computing further, you'll encounter more

gates and complex circuits for solving specific problems efficiently.

Lean more about Quantum Circuits by visiting the Wikipedia page on Quantum Circuits.

Challenges in Statistics:

• Rapidly evolving field: Quantum computing research is constantly progressing,

making it difficult to track statistics on specific aspects like individual logic gates

or circuits.

• Varied approaches and implementations: Different research groups and

companies may implement logic gates and circuits differently, making

standardization and consistent metrics challenging.

• Focus on overall performance: Current metrics often focus on broader

measures like error rates, gate fidelities, and overall quantum circuit performance,

rather than individual gate statistics.

Here are some alternative approaches to finding information:

• Recent research papers: Search research databases like arXiv or Google Scholar

for recent papers mentioning specific logic gates or circuits you're interested in.

These papers often discuss performance metrics and compare different

implementations.

• Industry reports and news articles: Keep an eye out for industry reports or

news articles discussing advancements in quantum logic gates and circuits. These

sources may not offer specific statistics but can provide valuable insights into the

latest trends and developments.

• Track open-source projects: Follow projects like Qiskit, Cirq, and TensorFlow

Quantum, which offer various logic gate and circuit implementations. Their

documentation and release notes can reveal performance improvements and new

functionalities related to specific gates or circuits.

• Engage with the community: Participate in online forums and communities

dedicated to quantum computing. Discussing your interest in logic gates and

circuits with active researchers and developers can give you valuable insights and

access to unpublished results or ongoing research.

Here are some interesting recent developments in quantum logic gates and

circuits:

https://en.wikipedia.org/wiki/Quantum_circuit

• Super-compact universal quantum logic gates: Recent research has achieved

sub-wavelength size for single-gate implementations, potentially paving the way

for more scalable quantum circuits.

(Source: https://www.science.org/doi/10.1126/sciadv.adg6685)

• Noise-resilient gate designs: New efforts are focused on designing logic gates

that are more resistant to noise, a major challenge in quantum computing.

(Source: https://arxiv.org/abs/quant-ph/9712048)

• Machine learning optimization: Applying machine learning techniques to

optimize logic gate and circuit designs is an emerging trend with promising

results. (Source: https://arxiv.org/pdf/2207.14280)

1.2 QUANTUM CIRCUIT SIMULATION

Quantum circuit simulation plays a vital role in quantum computing development and

research. It allows us to predict the behavior of quantum circuits, test algorithms, and

analyze quantum systems without the need for actual quantum hardware. Qiskit provides

powerful tools for simulating quantum circuits.

1.2.1 SIMULATING QUANTUM CIRCUITS WITH QISKIT

To get started with quantum circuit simulation in Qiskit, you need to install the library if

you haven't already:

bash

pip install qiskit

Now, let's explore how to simulate a simple quantum circuit step by step.

Step 1: Import Qiskit and Create a Quantum Circuit

python

from qiskit import QuantumCircuit, Aer, execute

https://www.science.org/doi/10.1126/sciadv.adg6685
https://arxiv.org/abs/quant-ph/9712048
https://arxiv.org/pdf/2207.14280

Create a quantum circuit with two q1ubits

circuit = QuantumCircuit(2)

Here, we import the necessary Qiskit modules, create a quantum circuit, and specify the

number of qubits (in this case, two).

Step 2: Add Quantum Gates to the Circuit

Next, you can add quantum gates to the circuit to perform operations on qubits. For

example, let's apply a Hadamard gate to the first qubit:

python

Apply a Hadamard gate to the first qubit

circuit.h(0)

Step 3: Measure Qubits

To observe the results of quantum operations, you need to measure the qubits:

python

Measure both qubits

circuit.measure_all()

Step 4: Simulate the Quantum Circuit

Now, it's time to simulate the quantum circuit using Qiskit's Aer simulator:

python

Choose the simulator backend

simulator = Aer.get_backend('qasm_simulator')

Execute the circuit on the simulator

result = execute(circuit, simulator).result()

Step 5: Retrieve and Analyze Results

Finally, you can retrieve the results of the simulation and analyze them:

python

Get the measurement results

counts = result.get_counts(circuit)

Print the measurement outcomes

print(counts)

The counts variable contains the measurement outcomes, representing the possible

states of the qubits after measurement. It will show the probabilities of observing each

possible state.

For example, you might get output like {'00': 502, '11': 522}, which means that the

'00' state occurred 502 times, and the '11' state occurred 522 times in the simulation.

Advanced Quantum Circuit Simulation

As you advance in quantum circuit simulation, you can explore more complex quantum

gates, multi-qubit operations, and even quantum error correction simulations using

Qiskit. Quantum circuit simulation is a crucial step in understanding quantum algorithms

and developing quantum applications before running them on real quantum hardware.

1.3 QUANTUM ENTANGLEMENT

Quantum entanglement refers to the phenomenon where two or more qubits become

correlated in such a way that the state of one qubit is dependent on the state of another,

even when they are physically separated by large distances. This correlation exists beyond

classical explanations and leads to non-classical correlations and phenomena like

quantum superposition.

Quantum entanglement is one of the most intriguing and fundamental phenomena in

quantum mechanics. It plays a crucial role in various quantum applications, including

quantum computing and quantum communication. Let's take a peek into the concept of

quantum entanglement in more detail and provide additional code snippet examples

using Qiskit to create and analyze entangled qubits.

1.3.1 CREATING ENTANGLED QUBITS

One of the most famous entangled states is the Bell state (or EPR pair), which consists of

two qubits in an entangled state. The Bell state can be created using quantum gates,

specifically the Hadamard gate (H) and the CNOT gate. Here's the code example using

Qiskit to create an entangled Bell state:

python

from qiskit import QuantumCircuit, Aer, execute

Create a quantum circuit with two qubits

circuit = QuantumCircuit(2)

Apply a Hadamard gate to the first qubit

circuit.h(0)

Apply a CNOT gate with the first qubit as the control and the second qubit as

the target

circuit.cx(0, 1)

Measure both qubits

circuit.measure_all()

Simulate the circuit

simulator = Aer.get_backend('qasm_simulator')

result = execute(circuit, simulator).result()

Get and print the measurement outcomes

counts = result.get_counts(circuit)

print(counts)

Bell State Measurement

The Bell state measurement typically results in two possible outcomes: '00' and '11.' This

means that if one qubit is measured as '0,' the other qubit will also be '0,' and if one is

measured as '1,' the other will be '1.' These outcomes are highly correlated and

demonstrate the entanglement between the qubits.

1.3.2 APPLICATIONS OF QUANTUM ENTANGLEMENT

Quantum entanglement has profound implications and applications in various fields:

• Quantum Cryptography: Entanglement is used in quantum key distribution

(QKD) protocols like BBM92 and E91 to secure communication channels.

• Quantum Teleportation: Entanglement allows for the teleportation of quantum

states between distant qubits.

• Quantum Computing: Entanglement is a fundamental resource for quantum

algorithms and quantum error correction.

• Quantum Sensing: Entangled states are used in precision measurements, such as

gravitational wave detectors.

• Quantum Networking: Entanglement enables the creation of quantum networks

for distributed quantum computing and communication.

Understanding and harnessing quantum entanglement is at the heart of many quantum

technologies, and it continues to be a topic of active research and development in the

field of quantum information science.

Learn more about Quantum Entanglement from the Wikipedia Page on Quantum

Entanglement.

1.4 QUANTUM MEASUREMENT

Understand the principles of quantum measurement and how it influences the state of

qubits. Explore how measurement collapses the quantum state into a classical outcome.

Quantum measurement is a fundamental concept in quantum mechanics that plays a

crucial role in the behavior of quantum systems. In this explanation, we'll dive into the

principles of quantum measurement, its impact on the state of qubits, and provide

practical code examples using Qiskit to illustrate quantum measurement in action.

1.4.1 PRINCIPLES OF QUANTUM MEASUREMENT

In quantum mechanics, a quantum state is typically described as a superposition of

multiple possible states, represented by a complex probability amplitude. However,

when we make a measurement on a quantum system, the state "collapses" into one of

its possible classical outcomes, with probabilities determined by the squared

https://en.wikipedia.org/wiki/Quantum_entanglement
https://en.wikipedia.org/wiki/Quantum_entanglement

magnitudes of the amplitudes. This phenomenon is known as the collapse of the

wavefunction.

1.4.2 QUANTUM MEASUREMENT IN QISKIT

Qiskit provides a simple way to perform quantum measurements using its measurement

gates. Let's illustrate quantum measurement with a code example:

python

from qiskit import QuantumCircuit, Aer, execute

Create a quantum circuit with a single qubit

circuit = QuantumCircuit(1)

Apply a Hadamard gate to create superposition

circuit.h(0)

Measure the qubit

circuit.measure(0, 0) # Measuring qubit 0 and storing the result in classical bit 0

Simulate the circuit

simulator = Aer.get_backend('qasm_simulator')

result = execute(circuit, simulator).result()

Get and print the measurement outcomes

counts = result.get_counts(circuit)

print(counts)

In this code, we create a quantum circuit with one qubit, apply a Hadamard gate to

create superposition (which puts the qubit in the state |0⟩ + |1⟩), and then measure the

qubit. The measurement result will collapse the superposition state into either |0⟩ or |1⟩

with roughly equal probabilities. The outcome is recorded as either '0' or '1' in the

measurement results.

Practical Applications

Quantum measurement is a fundamental process with several practical applications:

Quantum Key Distribution (QKD): In quantum cryptography, qubits are transmitted

between parties, and measurement results are used to generate secure encryption keys.

Quantum Teleportation: Quantum entanglement and measurement allow for the

teleportation of quantum states from one location to another.

Quantum Computing: Quantum algorithms rely on measurement to extract

information from quantum states during computation.

Quantum Error Correction: Measurement plays a role in error correction codes, where

faulty qubits are identified and corrected based on measurement outcomes.

Quantum Sensing: In precision measurement applications, quantum systems use

measurements to provide highly accurate readings, such as in atomic clocks and

magnetometers.

Quantum Networking: Measurement outcomes are used to share quantum

information and perform distributed quantum computations in quantum networks.

Understanding quantum measurement is essential for harnessing the unique capabilities

of quantum systems and building practical quantum technologies.

Study Quantum Measurement in depth with this resource by Wikipedia about

measurement in quantum mechanics.

https://en.wikipedia.org/wiki/Measurement_in_quantum_mechanics
https://en.wikipedia.org/wiki/Measurement_in_quantum_mechanics

1.5 QUANTUM SUPERPOSITION

Study the concept of quantum superposition, where qubits can exist in multiple states

simultaneously. Explore how superposition enables quantum computers to process

information differently from classical computers.

Quantum superposition is a fundamental concept in quantum computing, enabling

qubits to exist in multiple states simultaneously. This unique property allows quantum

computers to process information differently from classical computers, potentially

solving complex problems more efficiently. Let's explore quantum superposition in

detail, provide code examples using Qiskit, and discuss practical applications.

1.5.1 PRINCIPLES OF QUANTUM SUPERPOSITION

In classical computing, bits can be in one of two states: 0 or 1. However, qubits, the

fundamental units of quantum computation, can exist in a superposition of both 0 and 1

states simultaneously. Mathematically, a qubit in superposition is represented as:

|𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩

Here, α and β are complex amplitudes, and ∣α∣² and ∣β∣² represent the probabilities of

measuring the qubit in states 0 and 1, respectively .

1.5.2 QUANTUM SUPERPOSITION IN QISKIT

Qiskit makes it easy to create quantum circuits that exploit superposition. Here's an

example code snippet:

python

from qiskit import QuantumCircuit, Aer, execute

Create a quantum circuit with a single qubit

circuit = QuantumCircuit(1)

 # Apply a Hadamard gate to create superposition

circuit.h(0)

Measure the qubit

circuit.measure(0, 0) # Measuring qubit 0 and storing the result in classical bit 0

Simulate the circuit

simulator = Aer.get_backend('qasm_simulator')

result = execute(circuit, simulator).result()

Get and print the measurement outcomes

counts = result.get_counts(circuit)

print(counts)

In this code, we create a quantum circuit with one qubit, apply a Hadamard gate (H) to

create superposition, and then measure the qubit. The measurement outcomes will

show that the qubit exists in both states |0⟩ and |1⟩ simultaneously, each with

approximately 50% probability.

Practical Applications

Quantum superposition has numerous practical applications across various domains:

Quantum Computing: Superposition allows quantum computers to perform certain

computations exponentially faster than classical computers, making them promising for

cryptography, optimization, and complex simulations.

Quantum Cryptography: Quantum key distribution (QKD) protocols utilize

superposition for secure key exchange, ensuring the confidentiality of communication.

Quantum Machine Learning: Quantum algorithms leverage superposition to enhance

machine learning tasks, such as feature selection, clustering, and searching in large

datasets.

Quantum Sensing: Superposition enhances the precision of quantum sensors, enabling

highly accurate measurements in fields like metrology and geophysics.

Quantum Chemistry: Quantum superposition helps quantum computers simulate

molecular systems, revolutionizing drug discovery and material science.

Quantum Optimization: Superposition aids in solving complex optimization problems,

with applications in logistics, supply chain management, and financial modeling.

Understanding and harnessing quantum superposition is at the core of quantum

computing's potential to revolutionize various industries by solving problems that are

intractable for classical computers.

Expand your knowledge with Wikipedia’s page on Quantum Superposition.

1.6 QUANTUM ALGORITHMS

Discover quantum algorithms that leverage quantum parallelism and entanglement to

solve certain problems more efficiently than classical algorithms. Examples include Shor's

algorithm for factorization and Grover's search algorithm.

Quantum algorithms are a central part of quantum computing and take advantage of

quantum phenomena such as superposition and entanglement to solve problems more

efficiently than classical algorithms. Let's focus on two prominent quantum algorithms:

Shor's algorithm and Grover's algorithm.

https://en.wikipedia.org/wiki/Quantum_superposition

1.6.1 SHOR'S ALGORITHM

Principle: Shor's algorithm is a quantum algorithm that efficiently factors large integers

into their prime factors. Factoring large numbers into primes is challenging for classical

computers and forms the basis of many encryption methods.

Code Example (Shor's Algorithm using Qiskit):

python

from qiskit import QuantumCircuit, Aer, execute

from qiskit.algorithms import Shor

Create a QuantumCircuit to factor a number

n = 15 # The number to be factored

circuit = QuantumCircuit(Shor.get_required_number_of_qubits(n),

Shor.get_required_number_of_auxiliary_qubits(n))

shor = Shor(quantum_instance=Aer.get_backend('qasm_simulator'))

factors = shor.factor(n)

Print the factors

print(factors)

The provided code example demonstrates how to use Qiskit to implement Shor's

algorithm for factoring a number. Shor's algorithm is known for its potential to factor

large numbers exponentially faster than classical algorithms, which has significant

implications for cryptography. Let's break down the code step by step:

1. Importing Libraries:

python

from qiskit import QuantumCircuit, Aer, execute

from qiskit.algorithms import Shor

This section imports the necessary Qiskit modules for creating quantum circuits,

executing them, and accessing Shor's algorithm from the Qiskit algorithms module.

2. Creating a Quantum Circuit:

python

n = 15 # The number to be factored

circuit = QuantumCircuit(Shor.get_required_number_of_qubits(n),

Shor.get_required_number_of_auxiliary_qubits(n))

In this part, you define the number you want to factor, which is n = 15 in this example.

Then, you create a quantum circuit to run Shor's algorithm. The number of qubits

required for the quantum circuit is determined by

Shor.get_required_number_of_qubits(n) and the number of auxiliary qubits by

Shor.get_required_number_of_auxiliary_qubits(n).

3. Running Shor's Algorithm:

python

shor = Shor(quantum_instance=Aer.get_backend('qasm_simulator')) factors =

shor.factor(n)

Here, you create an instance of Shor's algorithm, specifying the quantum backend to

use ('qasm_simulator') in this case, which is a quantum simulator provided by Qiskit for

testing). Then, you use Shor's algorithm to factor the number n. The result is stored in

the factors variable.

4. Printing the Factors:

python

print(factors)

Finally, you print the factors obtained from Shor's algorithm. If the algorithm

successfully factors the number, you will see the prime factors of n printed to the

console.

Please note that the code provided is a simplified example for demonstration purposes

and may not be suitable for factoring very large numbers efficiently. Shor's algorithm's

practical applicability is currently limited to small numbers due to the limited qubit

resources available in today's quantum computers. However, it showcases the use of

Shor's algorithm within Qiskit and a quantum simulator for educational and testing

purposes.

Practical Application: Shor's algorithm has implications for breaking widely used

cryptographic algorithms like RSA, which rely on the difficulty of factoring large

numbers. Its potential impact on cybersecurity has led to the exploration of post-

quantum cryptography methods.

QuTech Academy offers an awesome video to further elaborate on Shor’s Algorithm.

1.6.2 GROVER'S ALGORITHM

Principle: Grover's algorithm is a quantum search algorithm that can search an unsorted

database of N items in roughly N queries, offering a quadratic speedup over classical

algorithms.

Code Example (Grover's Algorithm using Qiskit):

python

from qiskit import QuantumCircuit, Aer, execute

from qiskit.algorithms import Grover, AmplificationProblem

https://www.qutube.nl/quantum-algorithms/shors-algorithm

Define the problem: searching for a marked item in an unsorted list

marked_item = 7

The item we want to find

Oracle = QuantumCircuit(3)

oracle.z(2)

Apply a Z-gate to mark the item

problem = AmplificationProblem(oracle=oracle, state_preparation=None)

Create a Grover instance and run the algorithm

grover = Grover(quantum_instance=Aer.get_backend('qasm_simulator'))

result = grover.amplify(problem)

Get the marked item from the result

marked_items = problem.interpret_measurement(result['measurement'])

print(marked_items)

The provided code example demonstrates the implementation of Grover's algorithm

using Qiskit.. Grover's algorithm is a quantum algorithm known for its speedup in

searching unsorted databases or solving unstructured search problems. Let's break

down the code step by step:

1. Importing Libraries:

python

from qiskit import QuantumCircuit, Aer, execute

from qiskit.algorithms import Grover, AmplificationProblem

This section imports the necessary Qiskit modules for creating quantum circuits,

executing them, and accessing Grover's algorithm from the Qiskit algorithms module.

2. Defining the Search Problem:

python

marked_item = 7 # The item we want to find

oracle = QuantumCircuit(3)

oracle.z(2) # Apply a Z-gate to mark the item

problem = AmplificationProblem(oracle=oracle, state_preparation=None)

In this part, you define the search problem. marked_item represents the item you want

to find in an unsorted list (in this case, 7). The oracle quantum circuit is created with

three qubits. The oracle.z(2) operation applies a Z-gate to the third qubit (index 2) to

mark the desired item. The AmplificationProblem is initialized with the oracle and

state_preparation (which is set to None for simplicity).

3. Creating a Grover Instance and Running the Algorithm:

python

grover = Grover(quantum_instance=Aer.get_backend('qasm_simulator')) result

= grover.amplify(problem)

Here, you create an instance of Grover's algorithm, specifying the quantum backend to

use ('qasm_simulator') in this case, which is a quantum simulator provided by Qiskit for

testing). Then, you use the amplify method of Grover's algorithm to solve the search

problem.

4. Interpreting the Measurement Results:

python

marked_items = problem.interpret_measurement(result['measurement'])

print(marked_items)

After running Grover's algorithm, you interpret the measurement results obtained from

the algorithm. The problem.interpret_measurement() function extracts the marked

item(s) from the measurement outcomes. In this case, it should return the marked item,

which is 7.

Grover's algorithm is particularly useful for searching databases when the search items

are not organized in any specific order. It provides a quadratic speedup over classical

algorithms and has applications in areas like cryptography, optimization, and

unstructured data search.

Practical Application: Grover's algorithm has applications in searching unstructured

databases, solving constraint satisfaction problems, and optimizing black-box functions,

which have implications for tasks like network routing and artificial intelligence.

Quantum algorithms like Shor's and Grover's demonstrate the power of quantum

computing in solving complex problems more efficiently than classical algorithms. Their

practical applications extend to cryptography, optimization, and various fields that

require large-scale data processing.

QuTech Academy also offers an awesome video to further elaborate on Grover’s

Algorithm

1.7 QUANTUM ERROR CORRECTION

Learn about the challenges of quantum error correction and the methods employed to

mitigate errors in quantum computations. Understand the role of quantum error

correction codes.

https://www.qutube.nl/quantum-algorithms/grovers-algorithm-124
https://www.qutube.nl/quantum-algorithms/grovers-algorithm-124

Quantum error correction is a crucial aspect of quantum computing, aiming to address

the inherent susceptibility of quantum bits (qubits) to errors caused by various factors

such as environmental noise and decoherence. In this expansion, we'll delve into

quantum error correction, discuss common error correction codes, and provide

examples in Qiskit, along with practical applications.

1.7.1 CHALLENGES IN QUANTUM ERROR CORRECTION

Quantum error correction is essential because qubits are highly sensitive to external

influences, making them prone to errors. These errors can disrupt quantum

computations, rendering quantum computers less reliable. Some of the key challenges

in quantum error correction include:

Decoherence: Qubits can lose their quantum information due to interactions with the

environment, leading to decoherence.

Quantum Gates Errors: Imperfections in quantum gates can introduce errors during

quantum operations.

Measurement Errors: Measuring qubits can introduce inaccuracies, especially when

dealing with entangled qubits.

Quantum Communication Errors: Errors can occur when transferring quantum

information between qubits in a quantum circuit.

1.7.2 QUANTUM ERROR CORRECTION CODES

Quantum error correction codes are specialized techniques designed to detect and

correct errors in quantum computations. Common quantum error correction codes

include:

Quantum Error Correction 3 (QEC3): A simple error detection code that uses three

qubits to detect errors in a single qubit.

Steane Code: A seven-qubit code that can correct arbitrary single-qubit errors.

Shor Code: A nine-qubit code that can correct both single-qubit and two-qubit errors.

Surface Code: A 2D lattice-based code that is among the most promising for fault-

tolerant quantum computing.

Code Example (Repetition Code Error Correction in Qiskit):

python

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer,

execute

from qiskit.providers.aer import AerSimulator

from qiskit.ignis.verification.topological_codes import RepetitionCode

from qiskit.ignis.verification.topological_codes import lookuptable_decoding,

GraphDecoder

Create a 3-qubit repetition code

n = 3

repetition_code = RepetitionCode(n, 1)

Apply a bit-flip error on the first qubit

error_circuit = repetition_code.circuit['error', 0]

error_circuit.x(0)

Correct the error using the decoder

repetition_code.decode()

Simulate the corrected circuit simulator = AerSimulator()

corrected_result = execute(repetition_code.circuit, simulator).result()

Get and print the measurement outcomes

counts = corrected_result.get_counts()

print(counts)

The provided code is an example of error correction in quantum computing using Qiskit.

It implements a simple quantum error detection and correction code known as the

Repetition Code. Let's break down the code step by step:

1. Importing Libraries:

python

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer,

execute

from qiskit.providers.aer import AerSimulator

from qiskit.ignis.verification.topological_codes import RepetitionCode

from qiskit.ignis.verification.topological_codes import lookuptable_decoding,

GraphDecoder

This section imports the necessary Qiskit modules for creating quantum circuits,

simulating quantum executions, and accessing quantum error correction tools from the

Qiskit Ignis module.

2. Creating a 3-Qubit Repetition Code:

python

n = 3 # The number of qubits in the repetition code

repetition_code = RepetitionCode(n, 1)

Here, a 3-qubit repetition code is created using the RepetitionCode class from Qiskit.

The n parameter determines the number of qubits in the repetition code, and 1 specifies

the number of error correction codes per data qubit.

3. Applying a Bit-Flip Error:

python

error_circuit = repetition_code.circuit['error', 0]

error_circuit.x(0)

An error is intentionally introduced by flipping the state of the first qubit in the

repetition code. This simulates a common type of quantum error known as a bit-flip

error.

4. Error Correction using the Decoder:

python

repetition_code.decode()

The decode method is called on the repetition_code instance to attempt error

correction. The repetition code can detect and correct errors introduced during the

quantum computation.

5. Simulating the Corrected Circuit:

python

simulator = AerSimulator()

corrected_result = execute(repetition_code.circuit, simulator).result()

A quantum simulator (AerSimulator) is created for simulating the corrected quantum

circuit. The execute function is used to run the corrected circuit on the simulator.

6. Getting and Printing Measurement Outcomes:

python

counts = corrected_result.get_counts()

print(counts)

After simulating the corrected circuit, the measurement outcomes are obtained using

the get_counts method. The outcomes represent the final states of the qubits after

error correction and are printed to the console.

In summary, this code example demonstrates the process of creating a simple quantum

error correction code (Repetition Code), introducing a bit-flip error, attempting error

correction, simulating the corrected circuit, and finally, observing the measurement

outcomes. Quantum error correction is vital for ensuring the reliability and accuracy of

quantum computations, especially on quantum hardware where errors are inherent.

Practical Applications:

Quantum Computing Reliability: Quantum error correction is crucial for building

reliable quantum computers that can perform complex computations without being

severely affected by noise and errors.

Quantum Cryptography: Error correction is essential in quantum key distribution (QKD)

protocols to ensure the secure exchange of encryption keys.

Quantum Communication: In quantum communication networks, error correction

ensures that quantum information is transmitted accurately over long distances.

Quantum Sensing: Quantum error correction is used in precision measurements, such

as quantum magnetometry and atomic clock synchronization, to mitigate errors.

Quantum error correction is a fundamental component of quantum computing and

quantum technologies, enabling the realization of robust and reliable quantum systems

with practical applications across various domains.

Wikipedia has an extended article that goes in detail on quantum error correction where

one can learn much more about the topic.

1.8 QUANTUM CLOUD COMPUTING

Explore the integration of quantum computing with cloud platforms. Understand how

quantum cloud services, such as IBM Quantum Experience, provide access to quantum

devices and simulators.

Quantum cloud computing represents the convergence of quantum computing and

cloud platforms, allowing users to access quantum hardware and simulators over the

internet. In this expansion, we'll explore quantum cloud computing in detail, provide

examples of using IBM Quantum Experience, and discuss practical applications of

quantum cloud services.

1.8.1 PRINCIPLES OF QUANTUM CLOUD COMPUTING

Quantum cloud computing extends the benefits of cloud platforms to quantum

computing resources. Key principles and components of quantum cloud computing

include:

Quantum Hardware: Cloud providers offer access to quantum processors, including

quantum annealers and gate-based quantum computers.

Quantum Simulators: Quantum cloud platforms often provide quantum simulators that

allow users to test and develop quantum algorithms without access to physical quantum

hardware.

https://en.wikipedia.org/wiki/Quantum_error_correction

Programming Interfaces: Users can interact with quantum devices and simulators

using APIs and SDKs provided by cloud providers.

Remote Execution: Quantum computations are performed on remote quantum

hardware, and the results are returned to users via the internet.

1.8.2 QUANTUM CLOUD SERVICES: IBM QUANTUM EXPERIENCE

IBM Quantum Experience is a notable example of a quantum cloud service that offers

access to IBM's quantum devices and simulators. Here's a brief overview of how to use

IBM Quantum Experience with Qiskit, along with practical applications:

Code Example (Using IBM Quantum Experience with Qiskit):

python

from qiskit import QuantumCircuit, Aer, execute

from qiskit.providers import IBMProvider

from qiskit.tools.monitor import job_monitor

Load IBM Quantum Provider

provider = IBMProvider(hub='your_hub', group='your_group',

project='your_project')

Get a quantum backend (e.g., a real quantum device or simulator)

backend = provider.get_backend('ibmq_16_melbourne')

Create a quantum circuit

circuit = QuantumCircuit(2)

circuit.h(0)

circuit.cx(0, 1)

Execute the circuit on the selected backend

job = execute(circuit, backend=backend, shots=1024)

job_monitor(job)

Get and print the measurement

results result = job.result()

counts = result.get_counts()

print(counts)

The provided code example demonstrates how to use Qiskit to interact with IBM

Quantum Experience, a quantum cloud service, and perform a simple quantum

computation on a real quantum device or simulator. Let's break down the code step by

step:

1. Importing Libraries:

python

from qiskit import QuantumCircuit, Aer, execute

from qiskit.providers import IBMProvider from qiskit.tools.monitor import

job_monitor

This section imports the necessary Qiskit modules for creating quantum circuits,

executing them, and monitoring job progress. It also imports the IBMProvider for

accessing IBM Quantum Experience.

2. Loading the IBM Quantum Provider:

python

provider = IBMProvider(hub='your_hub', group='your_group',

project='your_project')

Here, you should replace 'your_hub', 'your_group', and 'your_project' with your actual

IBM Quantum Experience account information. This step connects your Qiskit

environment to the IBM Quantum Experience platform.

3. Selecting a Quantum Backend:

python

backend = provider.get_backend('ibmq_16_melbourne')

This line selects a quantum backend, which can either be a real quantum device or a

quantum simulator provided by IBM Quantum Experience. 'ibmq_16_melbourne' refers

to a specific IBM quantum device. You can change the backend to other available

options or simulators as needed.

4. Creating a Quantum Circuit:

python

circuit = QuantumCircuit(2)

circuit.h(0) circuit.cx(0, 1)

Here, a quantum circuit with two qubits is created. The circuit applies a Hadamard gate

(H) to the first qubit (qubit 0), which creates a superposition state. Then, it applies a

controlled-X gate (CX or CNOT) with the first qubit as the control and the second qubit

(qubit 1) as the target. This operation entangles the qubits.

5. Executing the Quantum Circuit:

python

job = execute(circuit, backend=backend, shots=1024)

job_monitor(job)

The execute function is used to run the quantum circuit on the selected backend. In this

case, the backend variable specifies the IBM Quantum Experience backend. The shots

parameter indicates how many times the circuit should be executed (here, 1024 times).

The job_monitor function is used to monitor the progress of the job in real-time.

6. Getting Measurement Results:

python

result = job.result() counts = result.get_counts()

print(counts)

After the job is completed, the results are obtained using job.result(). The counts

variable contains the measurement outcomes, showing how many times each possible

state was observed during the execution of the circuit. These outcomes are printed to

the console.

Overall, this code example demonstrates how to connect to IBM Quantum Experience,

create and execute a simple quantum circuit, and retrieve measurement results from a

quantum device or simulator. It serves as a basic template for running quantum

computations using Qiskit and a quantum cloud service.

Practical Applications:

Quantum Algorithm Development: Quantum cloud platforms enable researchers and

developers to experiment with and develop quantum algorithms on real quantum

hardware or simulators.

Quantum Education: Quantum cloud services provide educational resources, allowing

students and educators to learn about quantum computing and conduct experiments.

Quantum Research: Researchers can access remote quantum hardware to conduct

experiments, investigate quantum phenomena, and test novel quantum algorithms.

Quantum Prototyping: Quantum cloud computing allows businesses to prototype

quantum solutions for potential applications in optimization, cryptography, and

materials science.

Hybrid Quantum-Classical Computing: Quantum cloud platforms facilitate the

integration of quantum and classical computing for solving real-world problems

efficiently.

Quantum cloud computing democratizes access to quantum resources, accelerates

quantum research and development, and opens up opportunities for innovative

quantum applications across various domains.

If you’re not satisfied, CoinTeleGraph does a pretty good job of describing this field

through their page on Quantum Cloud Computing.

1.9 QUANTUM CRYPTOGRAPHY

Dive into the field of quantum cryptography, which exploits the principles of quantum

mechanics to secure communication channels. Explore concepts like quantum key

distribution for secure communication.

Quantum cryptography is a fascinating field that leverages the principles of quantum

mechanics to provide secure communication channels. It offers a level of security that is

theoretically unbreakable, as it relies on fundamental quantum properties such as

entanglement and the no-cloning theorem. Let's dive into quantum cryptography,

explore its key concepts, provide code examples, and discuss practical applications.

1.9.1 KEY CONCEPTS IN QUANTUM CRYPTOGRAPHY

Quantum Key Distribution (QKD): QKD is a fundamental application of quantum

cryptography. It enables two parties to securely exchange cryptographic keys over a

https://cointelegraph.com/explained/what-is-quantum-cloud-computing-and-how-does-it-work

potentially insecure communication channel. The most famous QKD protocol is the

BBM92 (BB84) protocol, which uses the properties of quantum states to detect

eavesdropping attempts.

Quantum Entanglement: Entangled particles exhibit correlated behavior, and any

measurement on one particle instantly affects the other, regardless of the distance

between them. Entanglement forms the basis for secure key exchange in QKD.

No-Cloning Theorem: The no-cloning theorem states that it is impossible to create an

exact copy of an arbitrary unknown quantum state. This theorem ensures the security of

QKD, as any eavesdropping attempt would introduce errors detectable by the legitimate

parties.

1.9.2 QUANTUM KEY DISTRIBUTION (QKD) EXAMPLE

Let's illustrate the concept of QKD using Qiskit:

python

from qiskit import QuantumCircuit, Aer, execute

from qiskit.visualization import plot_histogram

from qiskit.providers.aer import QasmSimulator

from qiskit.extensions import Initialize

Alice generates random bits and encodes them in quantum states

alice_bits = "110101"

alice_circuit = QuantumCircuit(len(alice_bits), len(alice_bits))

for i, bit in enumerate(alice_bits):

 if bit == "1": alice_circuit.x(i)

Bob receives qubits from Alice and measures them

bob_circuit = QuantumCircuit(len(alice_bits), len(alice_bits))

for i in range(len(alice_bits)):

 bob_circuit.measure(i, i)

Simulate the quantum communication

simulator = QasmSimulator() combined_

circuit = alice_circuit + bob_circuit

result = execute(combined_circuit, simulator, shots=1).result()

counts = result.get_counts()

print("Bob's measurement results:", counts)

In this example, Alice generates random bits, encodes them in quantum states (0

represented as |0⟩ and 1 as |1⟩), and sends the qubits to Bob. Bob measures the qubits

and obtains the results, which should match Alice's bits if there is no eavesdropping.

The provided code example illustrates the concept of Quantum Key Distribution (QKD)

using Qiskit. QKD is a cryptographic protocol that allows two parties, Alice and Bob, to

securely exchange cryptographic keys over a potentially insecure communication

channel. The code demonstrates a simplified QKD scenario between Alice and Bob. Let's

break down the code step by step:

1. Importing Libraries:

python

from qiskit import QuantumCircuit, Aer, execute

from qiskit.visualization import plot_histogram

from qiskit.providers.aer import QasmSimulator

from qiskit.extensions import Initialize

This section imports the necessary Qiskit modules for creating quantum circuits,

visualizing measurement results, simulating quantum executions, and initializing qubits

in specific states.

2. Alice's Qubit Preparation:

python

alice_bits = "110101"

alice_circuit = QuantumCircuit(len(alice_bits), len(alice_bits))

for i, bit in enumerate(alice_bits):

 if bit == "1":

 alice_circuit.x(i)

Alice generates random bits represented by the alice_bits string (e.g., "110101"). For

each bit, if it is "1," she applies an X-gate (bit-flip gate) to the corresponding qubit in her

quantum circuit. This step encodes her random bits into quantum states.

3. Bob's Qubit Measurement:

python

bob_circuit = QuantumCircuit(len(alice_bits), len(alice_bits))

for i in range(len(alice_bits)):

 bob_circuit.measure(i, i)

Bob prepares an empty quantum circuit with the same number of qubits as Alice's. He

then measures each qubit in his circuit. Bob's qubits are initially in the standard |0⟩ state,

so the measurement will collapse the qubits to either |0⟩ or |1⟩ states.

4. Simulating Quantum Communication:

python

simulator = QasmSimulator()

combined_circuit = alice_circuit + bob_circuit

result = execute(combined_circuit, simulator, shots=1).result()

To simulate the quantum communication between Alice and Bob, a quantum simulator

(QasmSimulator) is used. The quantum circuits of Alice and Bob are combined into

combined_circuit, representing their interactions. The execute function runs the

combined circuit on the simulator, with shots=1 indicating a single execution.

5. Getting and Printing Measurement Results:

python

counts = result.get_counts()

print("Bob's measurement results:", counts)

After executing the combined circuit, the measurement outcomes are obtained using

the get_counts method. These outcomes represent the final state of Bob's qubits after

measurement. The results are printed to the console.

In this simplified example, Alice prepares random bits, encodes them into quantum

states, and sends them to Bob. Bob measures the qubits to obtain the random bits Alice

encoded. This process is a basic representation of QKD, where the quantum properties

of qubits ensure the security of the key exchange. In practice, QKD protocols are more

sophisticated and provide higher levels of security against eavesdropping.

Practical Applications of Quantum Cryptography

Secure Communication: Quantum cryptography ensures the security of

communication channels, making it impossible for eavesdroppers to intercept or

decipher encrypted messages.

Financial Transactions: Quantum cryptography can secure financial transactions,

protect sensitive data, and prevent unauthorized access to financial systems.

Government and Military Communications: Governments and military organizations

can use quantum cryptography to secure classified and sensitive communications.

Healthcare Data: Medical institutions can protect patient data and medical records

using quantum cryptography to prevent data breaches.

IoT Security: Quantum cryptography can enhance the security of Internet of Things

(IoT) devices and networks, safeguarding critical infrastructure and smart cities.

Quantum cryptography represents a paradigm shift in data security and encryption,

offering unprecedented levels of security in an increasingly interconnected world. It has

the potential to revolutionize how data is protected and transmitted across various

domains.

1.10 QUANTUM MACHINE LEARNING (QML)

Investigate the intersection of quantum computing and machine learning. Explore

quantum machine learning algorithms and how quantum computers may provide

advantages in certain types of machine learning tasks.

Quantum Machine Learning (QML) is a rapidly growing interdisciplinary field that

combines quantum computing and machine learning techniques. It explores how

quantum computers can potentially outperform classical computers in solving specific

machine learning tasks. In this expansion, we'll delve into QML, discuss key concepts,

provide code examples using Qiskit, and explore practical applications.

1.10.1 KEY CONCEPTS IN QUANTUM MACHINE LEARNING

Quantum Data Representation: QML introduces quantum data encoding techniques,

such as quantum feature maps, to represent classical data in a quantum state. These

quantum states are then processed by quantum algorithms.

Quantum Algorithms: Quantum algorithms like the Quantum Support Vector Machine

(QSVM), Quantum Neural Networks, and Quantum Principal Component Analysis (PCA)

are designed to perform machine learning tasks more efficiently on quantum

computers.

Quantum Speedup: Quantum computers have the potential to provide a speedup for

specific machine learning tasks, particularly those involving large datasets and complex

optimization problems.

1.10.2 QUANTUM MACHINE LEARNING ALGORITHMS EXAMPLE

(QSVM)

Let's explore a basic example of Quantum Support Vector Machine (QSVM) using Qiskit

Aqua, an extended library for quantum computing:

python

from qiskit.aqua import QuantumInstance

from qiskit.aqua.algorithms import QSVM

from qiskit.aqua.components.multiclass_extensions import AllPairs

Sample data and labels

training_data = [[0.5, 0.2], [0.2, 0.6], [0.8, 0.9], [0.7, 0.1]]

labels = [0, 1, 1, 0]

Create a QSVM instance

qsvm = QSVM(training_data, labels,

quantum_instance=QuantumInstance(backend=Aer.get_backend('qasm_simulat

or')))

Run the QSVM algorithm

result =

qsvm.run(quantum_instance=QuantumInstance(backend=Aer.get_backend('qas

m_simulator')))

Get the predicted labels

predicted_labels = qsvm.predict([0.65, 0.3])

print("Predicted label:", predicted_labels)

The provided code example demonstrates the use of Quantum Support Vector Machine

(QSVM) for binary classification using Qiskit Aqua. QSVM is a quantum algorithm that

can be used for machine learning tasks, particularly for solving binary classification

problems. Let's break down the code step by step:

1. Importing Libraries:

python

from qiskit.aqua import QuantumInstance

from qiskit.aqua.algorithms import QSVM

from qiskit.aqua.components.multiclass_extensions import AllPairs

This section imports the necessary Qiskit Aqua modules for creating a quantum

instance, setting up the QSVM algorithm, and importing a multiclass extension for

binary classification.

2. Defining Training Data and Labels:

python

training_data = [[0.5, 0.2], [0.2, 0.6], [0.8, 0.9], [0.7, 0.1]]

labels = [0, 1, 1, 0]

Here, you define the training data, represented as a list of feature vectors

(training_data) and their corresponding labels (labels). In this example, you have two

features for each data point and binary labels (0 or 1) indicating the class.

3. Creating a QSVM Instance:

python

qsvm = QSVM(training_data, labels,

quantum_instance=QuantumInstance(backend=Aer.get_backend('qasm_simulat

or')))

You create an instance of the QSVM algorithm by providing the training data and labels.

Additionally, you specify the quantum instance to use for the quantum computations. In

this case, the qasm_simulator backend is used, which is a quantum simulator provided

by Qiskit for testing and debugging.

4. Running the QSVM Algorithm:

python

result =

qsvm.run(quantum_instance=QuantumInstance(backend=Aer.get_backend('qas

m_simulator')))

The run method of the QSVM algorithm is called to train the QSVM model on the

provided training data. The quantum simulator is used to perform the quantum

computations. After training, the model is ready to make predictions.

5. Making Predictions:

python

predicted_labels = qsvm.predict([0.65, 0.3])

You can use the trained QSVM model to make predictions for new data points. In this

example, you provide a feature vector [0.65, 0.3], and the QSVM algorithm predicts the

corresponding class label.

6. Printing the Predicted Label:

python

print("Predicted label:", predicted_labels)

The predicted label obtained from the QSVM model is printed to the console.

In summary, this code example demonstrates how to use Qiskit Aqua's QSVM algorithm

for binary classification. It starts with defining training data and labels, creates a QSVM

instance, trains the model, and uses it to predict the class label for a new data point.

QSVM is one of the quantum machine learning algorithms that leverage quantum

computing's potential to solve specific machine learning tasks efficiently.

Practical Applications:

Quantum Machine Learning for Data Analysis: QML can provide advantages in

processing and analyzing large datasets, making it valuable in fields like finance,

healthcare, and climate modeling.

Optimization Problems: QML can be used for solving complex optimization problems

encountered in supply chain management, logistics, and portfolio optimization.

Quantum Neural Networks: Quantum neural networks, such as the Quantum

Variational Circuit (QVC), can be applied to machine learning tasks like image

classification and natural language processing.

Quantum Chemistry: QML is used to simulate molecular structures, aiding drug

discovery and materials science by predicting chemical properties accurately.

Pattern Recognition: QML can enhance pattern recognition tasks, making it useful in

image recognition, speech analysis, and autonomous driving.

Quantum machine learning is an exciting field with the potential to transform various

industries by solving complex problems more efficiently than classical counterparts. It is

an area of active research, and as quantum computers continue to advance, their impact

on machine learning is expected to grow significantly.

FURTHER LEARNING

Here are some courses and places to learn more about Quantum Computing and Qiskit:

Free Online Courses:

• IBM Quantum Learning: Offered by IBM, this platform provides a variety of
courses on the fundamentals of quantum computing and Qiskit, ranging from
beginner to advanced levels. It also includes tutorials, workshops, and
challenges.

de.quantum-computing.ibm.com

IBM Quantum Learning Platform

• edX Courses: Several universities offer quantum computing courses on
edX, such as "Quantum Computer Systems Design I: Intro to Quantum
Computation and Programming" by the University of Chicago and "Introduction to
Quantum Computing" by Delft University of Technology.

file:///C:/Users/craig/Desktop/Top%2010%20Emerging%20Coding%20And%20Software%20Trends%202024/de.quantum-computing.ibm.com
file:///C:/Users/craig/Desktop/Top%2010%20Emerging%20Coding%20And%20Software%20Trends%202024/de.quantum-computing.ibm.com

www.edunext.co

edX platform

• Udacity Nanodegree: Udacity's "Intro to Quantum Computing Nanodegree" is a
comprehensive program that teaches you the fundamentals of quantum
mechanics, quantum algorithms, and Qiskit programming.

www.udacity.com

Udacity platform

• Coursera Courses: Several universities offer quantum computing courses on
Coursera, such as "Quantum Machine Learning" by the University of Toronto and
"Quantum Computing for Everyone" by IBM.

http://www.edunext.co/
http://www.udacity.com/

Coursera platform

Books and Textbooks:

• Quantum Computing: A Gentle Introduction by Nielsen and Chuang: This
book is a classic textbook that provides a comprehensive introduction to quantum
computing.

www.amazon.com

Quantum Computing: A Gentle Introduction book

• Qiskit Textbook: This free, open-source textbook is a good resource for learning
Qiskit programming.

http://www.amazon.com/

medium.com

Qiskit Textbook

• Quantum Computing for Everyone by Chris Ferrie: This book is a beginner-
friendly introduction to quantum computing.

www.amazon.com

Quantum Computing for Everyone book

Other Resources:

• Qiskit Community: The Qiskit community is a great resource for learning and
asking questions about Qiskit. You can join the community forum or online chat
to connect with other learners and experts.

http://www.medium.com/
http://www.medium.com/
http://www.amazon.com/

github.com

Qiskit Community

• Quantum Inspire: Quantum Inspire is a platform that allows you to run quantum
experiments in the cloud. This is a great way to get hands-on experience with
quantum computing.

qutech.nl

Quantum Inspire platform

• Quantum Open Source Foundation: The Quantum Open Source Foundation is
a non-profit organization that supports the development of open-source quantum
software. They provide a variety of resources, including
documentation, tutorials, and code examples.

https://github.com/qiskit-community/lindbladmpo/pulls
https://github.com/qiskit-community/lindbladmpo/pulls
https://qutech.nl/2020/11/25/new-grant-to-bring-quantum-computing-closer-to-its-future-users-through-quantum-inspire-platform/
https://qutech.nl/2020/11/25/new-grant-to-bring-quantum-computing-closer-to-its-future-users-through-quantum-inspire-platform/

www.linkedin.com

Quantum Open Source Foundation logo

• Industry Events and Conferences: Attending industry events and conferences
is a great way to learn about the latest developments in quantum
computing. Some popular events include the Qiskit Quantum Summit, IEEE
Quantum Week, and the APS March Meeting.

http://www.linkedin.com/

