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Figure 1.1: Quantum Computer trend as of Jan. 2024 

Analysis: The uptick in trend activity we see in December 2023 for ‘Quantum Computing’ 

foreshadows an increase in the popularity of quantum computing in 2024.  

This field has the capability to completely revolutionize the way we do anything online, 

including SEO and Digital Marketing all together. 

https://trends.google.com/


Quantum computing is an obviously complex field. Just look at the map on quantum 

computing below! 

 

Figure 1.2: Map of Quantum computing by Domain Of Science – available at 

https://store.dftba.com/collections/domain-of-science/products/map-of-quantum-

computing  

First up, jump into the world of quantum computing using Qiskit, a popular open-source 

quantum applying computing framework. If you’re new to or looking to get into 

Quantum Computing, this guide along with Qiskit can provide you with a strong 

foundation.  

https://store.dftba.com/collections/domain-of-science/products/map-of-quantum-computing
https://store.dftba.com/collections/domain-of-science/products/map-of-quantum-computing
https://qiskit.org/


Qiskit is an open-source quantum computing software development framework. It's 

designed to facilitate writing quantum computing experiments, programs, and 

applications. Created by IBM, it is intended to make quantum computing accessible to 

everyone, from researchers and developers to students and enthusiasts. Here are some 

key points about Qiskit: 

1. Programming Language: Qiskit is primarily written in Python, making it 

accessible to a wide range of programmers, as Python is known for its ease of use 

and readability. 

2. Quantum Circuits and Algorithms: Users can build quantum circuits and run 

them on various backends, including simulators and real quantum computers 

provided by IBM Quantum Experience. 

3. Components: It includes several components, like Terra for creating quantum 

programs, Aer for simulating quantum circuits, Ignis for quantum error 

correction, and Aqua for building quantum algorithms. 

4. Educational Resource: Qiskit also serves as an educational resource, offering 

tutorials and documentation to help users understand quantum computing 

concepts. 

5. Community and Research: Being open-source, it has a growing community of 

users and contributors. It's widely used in both academic and industry research 

for experimenting with quantum algorithms and applications. 

This powerful software is a part of a broader movement to make quantum computing 

more accessible and to develop a quantum-ready workforce as this field continues to 

evolve. 

General Quantum Computing: 

• Market size and growth: 



o The global quantum computing market is expected to reach $8.6 billion by 
2027, growing at a CAGR of 34.1% (Statista). 

o Another estimate predicts the market to hit $125 billion by 2030, with a 
staggering CAGR of 36.4% (Precedence Research). 

• Adoption rate: 

o Currently, 30% of organizations have adopted some form of quantum 
technology (Statista). 

o Leading sectors for adoption include telecoms, public sector, energy, and 
life sciences. 

• Investment: 

o The global investment in quantum computing reached $2.7 billion in 
2022 (TechCrunch). 

o Major players like IBM, Google, and Amazon are heavily invested in this 
field. 

Qiskit Specific: 

• User base: 

o As of November 2023, Qiskit boasts over 500,000 registered users (IBM 
Quantum GitHub repository). 

o This signifies a large and active developer community. 

• Downloads and contributions: 

o Qiskit has been downloaded over 10 million times (IBM Quantum GitHub 
repository). 

o This indicates widespread adoption and usage. 

• Publications and citations: 

o Over 2,000 research papers mention Qiskit (IBM Quantum GitHub 
repository). 

o This highlights the platform's impact on scientific research. 

• Community engagement: 

o Qiskit has vibrant online communities and forums with active discussions 
and support. 

Remember: These are just a few statistics, and the field of quantum computing is 
constantly evolving. For the latest updates, you can visit: 



• IBM Quantum website: https://quantum-computing.ibm.com/ 

• Qiskit website: https://qiskit.org/  

• Qiskit GitHub repository: https://github.com/Qiskit 

The code snippet below demonstrates the creation of a simple quantum circuit, 

quantum gates, and executing the circuit on a quantum simulator. 

python 

from qiskit import QuantumCircuit, Aer, transpile, assemble  

 

# Create a quantum circuit  

qc = QuantumCircuit(2, 2)  

 

# Apply Hadamard gate  

qc.h(0)  

 

# Apply CNOT gate  

qc.cx(0, 1)  

 

# Measure qubits  

qc.measure([0, 1], [0, 1]) 

  

# Execute the circuit on a simulator  

simulator = Aer.get_backend('qasm_simulator')  

result = execute(qc, simulator).result()  

 

# Get and print the counts  

counts = result.get_counts(qc)  

print(counts)  

 

https://quantum-computing.ibm.com/
https://qiskit.org/
https://github.com/Qiskit


1.1 QUANTUM LOGIC GATES AND CIRCUITS 

In this section, glance some of the fundamentals of quantum (logic) gates and circuits. 

Understand how quantum bits (qubits) can be manipulated using operations like 

Hadamard gates and controlled-X gates to perform quantum computations. 

1.1.1 QUANTUM LOGIC GATES 

Quantum logic gates are analogous to classical logic gates but operate on quantum bits 

or qubits. They are represented as matrices that transform the state of a qubit. Here are 

some common quantum gates: 

1. Hadamard Gate (H Gate): The Hadamard gate creates superposition by rotating 

the qubit's state. It's a fundamental gate in quantum computing. 

Code Example (Qiskit in Python): 

python 

from qiskit import QuantumCircuit, Aer, execute 

 

# Create a quantum circuit with one qubit 

circuit = QuantumCircuit(1) 

 

# Apply Hadamard gate to the qubit 

circuit.h(0) 

 

# Simulate the circuit 

simulator = Aer.get_backend('qasm_simulator') 

result = execute(circuit, simulator).result() 

 

# Get and print the results 

counts = result.get_counts(circuit) 



print(counts) 

2. Pauli-X Gate (X Gate): Also known as the "bit-flip" gate, it flips the state of a 

qubit. 

Code Example (Qiskit in Python): 

python 

from qiskit import QuantumCircuit, Aer, execute  

 

# Create a quantum circuit with one qubit  

circuit = QuantumCircuit(1)  

 

# Apply Pauli-X gate to the qubit  

circuit.x(0)  

 

# Simulate the circuit  

simulator = Aer.get_backend('qasm_simulator')  

result = execute(circuit, simulator).result()  

 

# Get and print the results  

counts = result.get_counts(circuit)  

print(counts)  

Learn more about Quantum Logic Gates by visiting the Wikipedia page on Quantum 

Logic Gates. 

1.1.2 QUANTUM CIRCUITS 

Quantum circuits are constructed by applying a sequence of quantum gates to qubits. 

These gates manipulate the quantum states, and the final state represents the result of the 

quantum computation. 

https://en.wikipedia.org/wiki/Quantum_logic_gate
https://en.wikipedia.org/wiki/Quantum_logic_gate


Here's an example of a simple quantum circuit using Qiskit: 

python 

from qiskit import QuantumCircuit, Aer, execute  

 

# Create a quantum circuit with two qubits  

circuit = QuantumCircuit(2)  

 

# Apply Hadamard gate to the first qubit  

circuit.h(0)  

 

# Apply CNOT gate (controlled-X gate) with the first qubit as control and the 

second qubit as target  

circuit.cx(0, 1)  

 

# Measure qubits  

circuit.measure_all()  

 

# Simulate the circuit  

simulator = Aer.get_backend('qasm_simulator')  

result = execute(circuit, simulator).result()  

 

# Get and print the results  

counts = result.get_counts(circuit)  

print(counts)  

In this example, we create a quantum circuit with two qubits, apply a Hadamard gate to 

the first qubit, and then apply a CNOT gate to entangle the qubits. Finally, we measure 

the qubits to obtain results. 



Understanding quantum gates and circuits is essential for building and simulating 

quantum algorithms. As you explore quantum computing further, you'll encounter more 

gates and complex circuits for solving specific problems efficiently. 

Lean more about Quantum Circuits by visiting the Wikipedia page on Quantum Circuits. 

Challenges in Statistics: 

• Rapidly evolving field: Quantum computing research is constantly progressing, 

making it difficult to track statistics on specific aspects like individual logic gates 

or circuits. 

• Varied approaches and implementations: Different research groups and 

companies may implement logic gates and circuits differently, making 

standardization and consistent metrics challenging. 

• Focus on overall performance: Current metrics often focus on broader 

measures like error rates, gate fidelities, and overall quantum circuit performance, 

rather than individual gate statistics. 

Here are some alternative approaches to finding information: 

• Recent research papers: Search research databases like arXiv or Google Scholar 

for recent papers mentioning specific logic gates or circuits you're interested in. 

These papers often discuss performance metrics and compare different 

implementations. 

• Industry reports and news articles: Keep an eye out for industry reports or 

news articles discussing advancements in quantum logic gates and circuits. These 

sources may not offer specific statistics but can provide valuable insights into the 

latest trends and developments. 

• Track open-source projects: Follow projects like Qiskit, Cirq, and TensorFlow 

Quantum, which offer various logic gate and circuit implementations. Their 

documentation and release notes can reveal performance improvements and new 

functionalities related to specific gates or circuits. 

• Engage with the community: Participate in online forums and communities 

dedicated to quantum computing. Discussing your interest in logic gates and 

circuits with active researchers and developers can give you valuable insights and 

access to unpublished results or ongoing research. 

Here are some interesting recent developments in quantum logic gates and 

circuits: 

https://en.wikipedia.org/wiki/Quantum_circuit


• Super-compact universal quantum logic gates: Recent research has achieved 

sub-wavelength size for single-gate implementations, potentially paving the way 

for more scalable quantum circuits. 

(Source: https://www.science.org/doi/10.1126/sciadv.adg6685) 

• Noise-resilient gate designs: New efforts are focused on designing logic gates 

that are more resistant to noise, a major challenge in quantum computing. 

(Source: https://arxiv.org/abs/quant-ph/9712048) 

• Machine learning optimization: Applying machine learning techniques to 

optimize logic gate and circuit designs is an emerging trend with promising 

results. (Source: https://arxiv.org/pdf/2207.14280) 

 

1.2 QUANTUM CIRCUIT SIMULATION 

Quantum circuit simulation plays a vital role in quantum computing development and 

research. It allows us to predict the behavior of quantum circuits, test algorithms, and 

analyze quantum systems without the need for actual quantum hardware. Qiskit provides 

powerful tools for simulating quantum circuits. 

1.2.1 SIMULATING QUANTUM CIRCUITS WITH QISKIT 

To get started with quantum circuit simulation in Qiskit, you need to install the library if 

you haven't already: 

bash 

pip install qiskit  

Now, let's explore how to simulate a simple quantum circuit step by step. 

Step 1: Import Qiskit and Create a Quantum Circuit 

python 

from qiskit import QuantumCircuit, Aer, execute  

https://www.science.org/doi/10.1126/sciadv.adg6685
https://arxiv.org/abs/quant-ph/9712048
https://arxiv.org/pdf/2207.14280


 

# Create a quantum circuit with two q1ubits  

circuit = QuantumCircuit(2)  

Here, we import the necessary Qiskit modules, create a quantum circuit, and specify the 

number of qubits (in this case, two). 

Step 2: Add Quantum Gates to the Circuit 

Next, you can add quantum gates to the circuit to perform operations on qubits. For 

example, let's apply a Hadamard gate to the first qubit: 

python 

# Apply a Hadamard gate to the first qubit  

circuit.h(0)  

Step 3: Measure Qubits 

To observe the results of quantum operations, you need to measure the qubits: 

python 

# Measure both qubits  

circuit.measure_all()  

Step 4: Simulate the Quantum Circuit 

Now, it's time to simulate the quantum circuit using Qiskit's Aer simulator: 

python 

# Choose the simulator backend  

simulator = Aer.get_backend('qasm_simulator')  



 

# Execute the circuit on the simulator  

result = execute(circuit, simulator).result()  

Step 5: Retrieve and Analyze Results 

Finally, you can retrieve the results of the simulation and analyze them: 

python 

# Get the measurement results  

counts = result.get_counts(circuit)  

 

# Print the measurement outcomes  

print(counts)  

The counts variable contains the measurement outcomes, representing the possible 

states of the qubits after measurement. It will show the probabilities of observing each 

possible state. 

For example, you might get output like {'00': 502, '11': 522}, which means that the 

'00' state occurred 502 times, and the '11' state occurred 522 times in the simulation. 

Advanced Quantum Circuit Simulation 

As you advance in quantum circuit simulation, you can explore more complex quantum 

gates, multi-qubit operations, and even quantum error correction simulations using 

Qiskit. Quantum circuit simulation is a crucial step in understanding quantum algorithms 

and developing quantum applications before running them on real quantum hardware. 

 

1.3 QUANTUM ENTANGLEMENT 



Quantum entanglement refers to the phenomenon where two or more qubits become 

correlated in such a way that the state of one qubit is dependent on the state of another, 

even when they are physically separated by large distances. This correlation exists beyond 

classical explanations and leads to non-classical correlations and phenomena like 

quantum superposition. 

Quantum entanglement is one of the most intriguing and fundamental phenomena in 

quantum mechanics. It plays a crucial role in various quantum applications, including 

quantum computing and quantum communication. Let's take a peek into the concept of 

quantum entanglement in more detail and provide additional code snippet examples 

using Qiskit to create and analyze entangled qubits. 

1.3.1 CREATING ENTANGLED QUBITS 

One of the most famous entangled states is the Bell state (or EPR pair), which consists of 

two qubits in an entangled state. The Bell state can be created using quantum gates, 

specifically the Hadamard gate (H) and the CNOT gate. Here's the code example using 

Qiskit to create an entangled Bell state: 

python 

from qiskit import QuantumCircuit, Aer, execute  

 

# Create a quantum circuit with two qubits  

circuit = QuantumCircuit(2)  

 

# Apply a Hadamard gate to the first qubit  

circuit.h(0)  

 

# Apply a CNOT gate with the first qubit as the control and the second qubit as 

the target  



circuit.cx(0, 1)  

 

# Measure both qubits  

circuit.measure_all() 

  

# Simulate the circuit  

simulator = Aer.get_backend('qasm_simulator')  

result = execute(circuit, simulator).result()  

 

# Get and print the measurement outcomes  

counts = result.get_counts(circuit)  

print(counts)  

Bell State Measurement 

The Bell state measurement typically results in two possible outcomes: '00' and '11.' This 

means that if one qubit is measured as '0,' the other qubit will also be '0,' and if one is 

measured as '1,' the other will be '1.' These outcomes are highly correlated and 

demonstrate the entanglement between the qubits. 

1.3.2 APPLICATIONS OF QUANTUM ENTANGLEMENT 

Quantum entanglement has profound implications and applications in various fields: 

• Quantum Cryptography: Entanglement is used in quantum key distribution 

(QKD) protocols like BBM92 and E91 to secure communication channels. 

• Quantum Teleportation: Entanglement allows for the teleportation of quantum 

states between distant qubits. 

• Quantum Computing: Entanglement is a fundamental resource for quantum 

algorithms and quantum error correction. 



• Quantum Sensing: Entangled states are used in precision measurements, such as 

gravitational wave detectors. 

• Quantum Networking: Entanglement enables the creation of quantum networks 

for distributed quantum computing and communication. 

Understanding and harnessing quantum entanglement is at the heart of many quantum 

technologies, and it continues to be a topic of active research and development in the 

field of quantum information science. 

Learn more about Quantum Entanglement from the Wikipedia Page on Quantum 

Entanglement. 

 

1.4 QUANTUM MEASUREMENT 

Understand the principles of quantum measurement and how it influences the state of 

qubits. Explore how measurement collapses the quantum state into a classical outcome. 

Quantum measurement is a fundamental concept in quantum mechanics that plays a 

crucial role in the behavior of quantum systems. In this explanation, we'll dive into the 

principles of quantum measurement, its impact on the state of qubits, and provide 

practical code examples using Qiskit to illustrate quantum measurement in action. 

1.4.1 PRINCIPLES OF QUANTUM MEASUREMENT 

In quantum mechanics, a quantum state is typically described as a superposition of 

multiple possible states, represented by a complex probability amplitude. However, 

when we make a measurement on a quantum system, the state "collapses" into one of 

its possible classical outcomes, with probabilities determined by the squared 

https://en.wikipedia.org/wiki/Quantum_entanglement
https://en.wikipedia.org/wiki/Quantum_entanglement


magnitudes of the amplitudes. This phenomenon is known as the collapse of the 

wavefunction. 

1.4.2 QUANTUM MEASUREMENT IN QISKIT 

Qiskit provides a simple way to perform quantum measurements using its measurement 

gates. Let's illustrate quantum measurement with a code example: 

python 

from qiskit import QuantumCircuit, Aer, execute  

 

# Create a quantum circuit with a single qubit  

circuit = QuantumCircuit(1)  

 

# Apply a Hadamard gate to create superposition  

circuit.h(0)  

 

# Measure the qubit  

circuit.measure(0, 0) # Measuring qubit 0 and storing the result in classical bit 0  

 

# Simulate the circuit  

simulator = Aer.get_backend('qasm_simulator')  

result = execute(circuit, simulator).result()  

 

# Get and print the measurement outcomes  

counts = result.get_counts(circuit)  

print(counts)  

In this code, we create a quantum circuit with one qubit, apply a Hadamard gate to 

create superposition (which puts the qubit in the state |0⟩ + |1⟩), and then measure the 

qubit. The measurement result will collapse the superposition state into either |0⟩ or |1⟩ 



with roughly equal probabilities. The outcome is recorded as either '0' or '1' in the 

measurement results. 

Practical Applications 

Quantum measurement is a fundamental process with several practical applications: 

Quantum Key Distribution (QKD): In quantum cryptography, qubits are transmitted 

between parties, and measurement results are used to generate secure encryption keys. 

Quantum Teleportation: Quantum entanglement and measurement allow for the 

teleportation of quantum states from one location to another. 

Quantum Computing: Quantum algorithms rely on measurement to extract 

information from quantum states during computation. 

Quantum Error Correction: Measurement plays a role in error correction codes, where 

faulty qubits are identified and corrected based on measurement outcomes. 

Quantum Sensing: In precision measurement applications, quantum systems use 

measurements to provide highly accurate readings, such as in atomic clocks and 

magnetometers. 

Quantum Networking: Measurement outcomes are used to share quantum 

information and perform distributed quantum computations in quantum networks. 

Understanding quantum measurement is essential for harnessing the unique capabilities 

of quantum systems and building practical quantum technologies. 

Study Quantum Measurement in depth with this resource by Wikipedia about 

measurement in quantum mechanics. 

 

https://en.wikipedia.org/wiki/Measurement_in_quantum_mechanics
https://en.wikipedia.org/wiki/Measurement_in_quantum_mechanics


1.5 QUANTUM SUPERPOSITION 

Study the concept of quantum superposition, where qubits can exist in multiple states 

simultaneously. Explore how superposition enables quantum computers to process 

information differently from classical computers. 

Quantum superposition is a fundamental concept in quantum computing, enabling 

qubits to exist in multiple states simultaneously. This unique property allows quantum 

computers to process information differently from classical computers, potentially 

solving complex problems more efficiently. Let's explore quantum superposition in 

detail, provide code examples using Qiskit, and discuss practical applications. 

1.5.1 PRINCIPLES OF QUANTUM SUPERPOSITION 

In classical computing, bits can be in one of two states: 0 or 1. However, qubits, the 

fundamental units of quantum computation, can exist in a superposition of both 0 and 1 

states simultaneously. Mathematically, a qubit in superposition is represented as: 

|𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩ 

Here, α and β are complex amplitudes, and ∣α∣² and ∣β∣² represent the probabilities of 

measuring the qubit in states 0 and 1, respectively . 

1.5.2 QUANTUM SUPERPOSITION IN QISKIT 

Qiskit makes it easy to create quantum circuits that exploit superposition. Here's an 

example code snippet: 

python 

from qiskit import QuantumCircuit, Aer, execute  

 



# Create a quantum circuit with a single qubit  

circuit = QuantumCircuit(1) 

 

 # Apply a Hadamard gate to create superposition  

circuit.h(0)  

 

# Measure the qubit  

circuit.measure(0, 0) # Measuring qubit 0 and storing the result in classical bit 0  

 

# Simulate the circuit  

simulator = Aer.get_backend('qasm_simulator')  

result = execute(circuit, simulator).result()  

 

# Get and print the measurement outcomes  

counts = result.get_counts(circuit)  

print(counts)  

In this code, we create a quantum circuit with one qubit, apply a Hadamard gate (H) to 

create superposition, and then measure the qubit. The measurement outcomes will 

show that the qubit exists in both states |0⟩ and |1⟩ simultaneously, each with 

approximately 50% probability. 

Practical Applications 

Quantum superposition has numerous practical applications across various domains: 

Quantum Computing: Superposition allows quantum computers to perform certain 

computations exponentially faster than classical computers, making them promising for 

cryptography, optimization, and complex simulations. 

Quantum Cryptography: Quantum key distribution (QKD) protocols utilize 

superposition for secure key exchange, ensuring the confidentiality of communication. 



Quantum Machine Learning: Quantum algorithms leverage superposition to enhance 

machine learning tasks, such as feature selection, clustering, and searching in large 

datasets. 

Quantum Sensing: Superposition enhances the precision of quantum sensors, enabling 

highly accurate measurements in fields like metrology and geophysics. 

Quantum Chemistry: Quantum superposition helps quantum computers simulate 

molecular systems, revolutionizing drug discovery and material science. 

Quantum Optimization: Superposition aids in solving complex optimization problems, 

with applications in logistics, supply chain management, and financial modeling. 

Understanding and harnessing quantum superposition is at the core of quantum 

computing's potential to revolutionize various industries by solving problems that are 

intractable for classical computers. 

Expand your knowledge with Wikipedia’s page on Quantum Superposition. 

 

1.6 QUANTUM ALGORITHMS 

Discover quantum algorithms that leverage quantum parallelism and entanglement to 

solve certain problems more efficiently than classical algorithms. Examples include Shor's 

algorithm for factorization and Grover's search algorithm. 

Quantum algorithms are a central part of quantum computing and take advantage of 

quantum phenomena such as superposition and entanglement to solve problems more 

efficiently than classical algorithms. Let's focus on two prominent quantum algorithms: 

Shor's algorithm and Grover's algorithm. 

https://en.wikipedia.org/wiki/Quantum_superposition


1.6.1 SHOR'S ALGORITHM 

Principle: Shor's algorithm is a quantum algorithm that efficiently factors large integers 

into their prime factors. Factoring large numbers into primes is challenging for classical 

computers and forms the basis of many encryption methods. 

Code Example (Shor's Algorithm using Qiskit): 

python 

from qiskit import QuantumCircuit, Aer, execute  

from qiskit.algorithms import Shor  

 

# Create a QuantumCircuit to factor a number  

n = 15 # The number to be factored  

circuit = QuantumCircuit(Shor.get_required_number_of_qubits(n), 

Shor.get_required_number_of_auxiliary_qubits(n))  

shor = Shor(quantum_instance=Aer.get_backend('qasm_simulator'))  

factors = shor.factor(n)  

 

# Print the factors  

print(factors)  

The provided code example demonstrates how to use Qiskit to implement Shor's 

algorithm for factoring a number. Shor's algorithm is known for its potential to factor 

large numbers exponentially faster than classical algorithms, which has significant 

implications for cryptography. Let's break down the code step by step: 

1. Importing Libraries: 

python 

from qiskit import QuantumCircuit, Aer, execute  



from qiskit.algorithms import Shor  

This section imports the necessary Qiskit modules for creating quantum circuits, 

executing them, and accessing Shor's algorithm from the Qiskit algorithms module. 

2. Creating a Quantum Circuit: 

python 

n = 15  # The number to be factored  

circuit = QuantumCircuit(Shor.get_required_number_of_qubits(n), 

Shor.get_required_number_of_auxiliary_qubits(n))  

In this part, you define the number you want to factor, which is n = 15 in this example. 

Then, you create a quantum circuit to run Shor's algorithm. The number of qubits 

required for the quantum circuit is determined by 

Shor.get_required_number_of_qubits(n) and the number of auxiliary qubits by 

Shor.get_required_number_of_auxiliary_qubits(n). 

3. Running Shor's Algorithm: 

python 

shor = Shor(quantum_instance=Aer.get_backend('qasm_simulator')) factors = 

shor.factor(n)  

Here, you create an instance of Shor's algorithm, specifying the quantum backend to 

use ('qasm_simulator') in this case, which is a quantum simulator provided by Qiskit for 

testing). Then, you use Shor's algorithm to factor the number n. The result is stored in 

the factors variable. 

4. Printing the Factors: 

python 



print(factors)  

Finally, you print the factors obtained from Shor's algorithm. If the algorithm 

successfully factors the number, you will see the prime factors of n printed to the 

console. 

Please note that the code provided is a simplified example for demonstration purposes 

and may not be suitable for factoring very large numbers efficiently. Shor's algorithm's 

practical applicability is currently limited to small numbers due to the limited qubit 

resources available in today's quantum computers. However, it showcases the use of 

Shor's algorithm within Qiskit and a quantum simulator for educational and testing 

purposes. 

Practical Application: Shor's algorithm has implications for breaking widely used 

cryptographic algorithms like RSA, which rely on the difficulty of factoring large 

numbers. Its potential impact on cybersecurity has led to the exploration of post-

quantum cryptography methods. 

QuTech Academy offers an awesome video to further elaborate on Shor’s Algorithm. 

1.6.2 GROVER'S ALGORITHM 

Principle: Grover's algorithm is a quantum search algorithm that can search an unsorted 

database of N items in roughly N queries, offering a quadratic speedup over classical 

algorithms. 

Code Example (Grover's Algorithm using Qiskit): 

python 

from qiskit import QuantumCircuit, Aer, execute  

from qiskit.algorithms import Grover, AmplificationProblem  

https://www.qutube.nl/quantum-algorithms/shors-algorithm


 

# Define the problem: searching for a marked item in an unsorted list 

marked_item = 7  

 

# The item we want to find  

Oracle = QuantumCircuit(3)  

oracle.z(2)  

 

# Apply a Z-gate to mark the item  

problem = AmplificationProblem(oracle=oracle, state_preparation=None)  

 

# Create a Grover instance and run the algorithm  

grover = Grover(quantum_instance=Aer.get_backend('qasm_simulator'))  

result = grover.amplify(problem)  

 

# Get the marked item from the result  

marked_items = problem.interpret_measurement(result['measurement']) 

print(marked_items)  

The provided code example demonstrates the implementation of Grover's algorithm 

using Qiskit.. Grover's algorithm is a quantum algorithm known for its speedup in 

searching unsorted databases or solving unstructured search problems. Let's break 

down the code step by step: 

1. Importing Libraries: 

python 

from qiskit import QuantumCircuit, Aer, execute  

from qiskit.algorithms import Grover, AmplificationProblem  

This section imports the necessary Qiskit modules for creating quantum circuits, 

executing them, and accessing Grover's algorithm from the Qiskit algorithms module. 



2. Defining the Search Problem: 

python 

marked_item = 7 # The item we want to find  

oracle = QuantumCircuit(3)  

oracle.z(2) # Apply a Z-gate to mark the item  

problem = AmplificationProblem(oracle=oracle, state_preparation=None)  

In this part, you define the search problem. marked_item represents the item you want 

to find in an unsorted list (in this case, 7). The oracle quantum circuit is created with 

three qubits. The oracle.z(2) operation applies a Z-gate to the third qubit (index 2) to 

mark the desired item. The AmplificationProblem is initialized with the oracle and 

state_preparation (which is set to None for simplicity). 

3. Creating a Grover Instance and Running the Algorithm: 

python 

grover = Grover(quantum_instance=Aer.get_backend('qasm_simulator')) result 

= grover.amplify(problem)  

Here, you create an instance of Grover's algorithm, specifying the quantum backend to 

use ('qasm_simulator') in this case, which is a quantum simulator provided by Qiskit for 

testing). Then, you use the amplify method of Grover's algorithm to solve the search 

problem. 

4. Interpreting the Measurement Results: 

python 

marked_items = problem.interpret_measurement(result['measurement']) 

print(marked_items)  



After running Grover's algorithm, you interpret the measurement results obtained from 

the algorithm. The problem.interpret_measurement() function extracts the marked 

item(s) from the measurement outcomes. In this case, it should return the marked item, 

which is 7. 

Grover's algorithm is particularly useful for searching databases when the search items 

are not organized in any specific order. It provides a quadratic speedup over classical 

algorithms and has applications in areas like cryptography, optimization, and 

unstructured data search. 

Practical Application: Grover's algorithm has applications in searching unstructured 

databases, solving constraint satisfaction problems, and optimizing black-box functions, 

which have implications for tasks like network routing and artificial intelligence. 

Quantum algorithms like Shor's and Grover's demonstrate the power of quantum 

computing in solving complex problems more efficiently than classical algorithms. Their 

practical applications extend to cryptography, optimization, and various fields that 

require large-scale data processing. 

QuTech Academy also offers an awesome video to further elaborate on Grover’s 

Algorithm 

 

1.7 QUANTUM ERROR CORRECTION 

Learn about the challenges of quantum error correction and the methods employed to 

mitigate errors in quantum computations. Understand the role of quantum error 

correction codes. 

https://www.qutube.nl/quantum-algorithms/grovers-algorithm-124
https://www.qutube.nl/quantum-algorithms/grovers-algorithm-124


Quantum error correction is a crucial aspect of quantum computing, aiming to address 

the inherent susceptibility of quantum bits (qubits) to errors caused by various factors 

such as environmental noise and decoherence. In this expansion, we'll delve into 

quantum error correction, discuss common error correction codes, and provide 

examples in Qiskit, along with practical applications. 

1.7.1 CHALLENGES IN QUANTUM ERROR CORRECTION 

Quantum error correction is essential because qubits are highly sensitive to external 

influences, making them prone to errors. These errors can disrupt quantum 

computations, rendering quantum computers less reliable. Some of the key challenges 

in quantum error correction include: 

Decoherence: Qubits can lose their quantum information due to interactions with the 

environment, leading to decoherence. 

Quantum Gates Errors: Imperfections in quantum gates can introduce errors during 

quantum operations. 

Measurement Errors: Measuring qubits can introduce inaccuracies, especially when 

dealing with entangled qubits. 

Quantum Communication Errors: Errors can occur when transferring quantum 

information between qubits in a quantum circuit. 

1.7.2 QUANTUM ERROR CORRECTION CODES 

Quantum error correction codes are specialized techniques designed to detect and 

correct errors in quantum computations. Common quantum error correction codes 

include: 



Quantum Error Correction 3 (QEC3): A simple error detection code that uses three 

qubits to detect errors in a single qubit. 

Steane Code: A seven-qubit code that can correct arbitrary single-qubit errors. 

Shor Code: A nine-qubit code that can correct both single-qubit and two-qubit errors. 

Surface Code: A 2D lattice-based code that is among the most promising for fault-

tolerant quantum computing. 

Code Example (Repetition Code Error Correction in Qiskit): 

python 

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, 

execute  

from qiskit.providers.aer import AerSimulator  

from qiskit.ignis.verification.topological_codes import RepetitionCode  

from qiskit.ignis.verification.topological_codes import lookuptable_decoding, 

GraphDecoder  

 

# Create a 3-qubit repetition code  

n = 3  

repetition_code = RepetitionCode(n, 1)  

 

# Apply a bit-flip error on the first qubit  

error_circuit = repetition_code.circuit['error', 0]  

error_circuit.x(0)  

 

# Correct the error using the decoder  

repetition_code.decode()  

 

# Simulate the corrected circuit simulator = AerSimulator()  



corrected_result = execute(repetition_code.circuit, simulator).result()  

 

# Get and print the measurement outcomes  

counts = corrected_result.get_counts()  

print(counts)  

The provided code is an example of error correction in quantum computing using Qiskit. 

It implements a simple quantum error detection and correction code known as the 

Repetition Code. Let's break down the code step by step: 

1. Importing Libraries: 

python 

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, 

execute  

from qiskit.providers.aer import AerSimulator  

from qiskit.ignis.verification.topological_codes import RepetitionCode  

from qiskit.ignis.verification.topological_codes import lookuptable_decoding, 

GraphDecoder  

This section imports the necessary Qiskit modules for creating quantum circuits, 

simulating quantum executions, and accessing quantum error correction tools from the 

Qiskit Ignis module. 

2. Creating a 3-Qubit Repetition Code: 

python 

n = 3 # The number of qubits in the repetition code  

repetition_code = RepetitionCode(n, 1)  



Here, a 3-qubit repetition code is created using the RepetitionCode class from Qiskit. 

The n parameter determines the number of qubits in the repetition code, and 1 specifies 

the number of error correction codes per data qubit. 

3. Applying a Bit-Flip Error: 

python 

error_circuit = repetition_code.circuit['error', 0]  

error_circuit.x(0)  

An error is intentionally introduced by flipping the state of the first qubit in the 

repetition code. This simulates a common type of quantum error known as a bit-flip 

error. 

4. Error Correction using the Decoder: 

python 

repetition_code.decode()  

The decode method is called on the repetition_code instance to attempt error 

correction. The repetition code can detect and correct errors introduced during the 

quantum computation. 

5. Simulating the Corrected Circuit: 

python 

simulator = AerSimulator()  

corrected_result = execute(repetition_code.circuit, simulator).result()  

A quantum simulator (AerSimulator) is created for simulating the corrected quantum 

circuit. The execute function is used to run the corrected circuit on the simulator. 



6. Getting and Printing Measurement Outcomes: 

python 

counts = corrected_result.get_counts()  

print(counts)  

After simulating the corrected circuit, the measurement outcomes are obtained using 

the get_counts method. The outcomes represent the final states of the qubits after 

error correction and are printed to the console. 

In summary, this code example demonstrates the process of creating a simple quantum 

error correction code (Repetition Code), introducing a bit-flip error, attempting error 

correction, simulating the corrected circuit, and finally, observing the measurement 

outcomes. Quantum error correction is vital for ensuring the reliability and accuracy of 

quantum computations, especially on quantum hardware where errors are inherent. 

Practical Applications: 

Quantum Computing Reliability: Quantum error correction is crucial for building 

reliable quantum computers that can perform complex computations without being 

severely affected by noise and errors. 

Quantum Cryptography: Error correction is essential in quantum key distribution (QKD) 

protocols to ensure the secure exchange of encryption keys. 

Quantum Communication: In quantum communication networks, error correction 

ensures that quantum information is transmitted accurately over long distances. 

Quantum Sensing: Quantum error correction is used in precision measurements, such 

as quantum magnetometry and atomic clock synchronization, to mitigate errors. 



Quantum error correction is a fundamental component of quantum computing and 

quantum technologies, enabling the realization of robust and reliable quantum systems 

with practical applications across various domains. 

Wikipedia has an extended article that goes in detail on quantum error correction where 

one can learn much more about the topic. 

1.8 QUANTUM CLOUD COMPUTING 

Explore the integration of quantum computing with cloud platforms. Understand how 

quantum cloud services, such as IBM Quantum Experience, provide access to quantum 

devices and simulators. 

Quantum cloud computing represents the convergence of quantum computing and 

cloud platforms, allowing users to access quantum hardware and simulators over the 

internet. In this expansion, we'll explore quantum cloud computing in detail, provide 

examples of using IBM Quantum Experience, and discuss practical applications of 

quantum cloud services. 

1.8.1 PRINCIPLES OF QUANTUM CLOUD COMPUTING 

Quantum cloud computing extends the benefits of cloud platforms to quantum 

computing resources. Key principles and components of quantum cloud computing 

include: 

Quantum Hardware: Cloud providers offer access to quantum processors, including 

quantum annealers and gate-based quantum computers. 

Quantum Simulators: Quantum cloud platforms often provide quantum simulators that 

allow users to test and develop quantum algorithms without access to physical quantum 

hardware. 

https://en.wikipedia.org/wiki/Quantum_error_correction


Programming Interfaces: Users can interact with quantum devices and simulators 

using APIs and SDKs provided by cloud providers. 

Remote Execution: Quantum computations are performed on remote quantum 

hardware, and the results are returned to users via the internet. 

1.8.2 QUANTUM CLOUD SERVICES: IBM QUANTUM EXPERIENCE 

IBM Quantum Experience is a notable example of a quantum cloud service that offers 

access to IBM's quantum devices and simulators. Here's a brief overview of how to use 

IBM Quantum Experience with Qiskit, along with practical applications: 

Code Example (Using IBM Quantum Experience with Qiskit): 

python 

from qiskit import QuantumCircuit, Aer, execute  

from qiskit.providers import IBMProvider  

from qiskit.tools.monitor import job_monitor  

 

# Load IBM Quantum Provider  

provider = IBMProvider(hub='your_hub', group='your_group', 

project='your_project')  

 

# Get a quantum backend (e.g., a real quantum device or simulator)  

backend = provider.get_backend('ibmq_16_melbourne')  

 

# Create a quantum circuit  

circuit = QuantumCircuit(2)  

circuit.h(0)  

circuit.cx(0, 1)  

 



# Execute the circuit on the selected backend  

job = execute(circuit, backend=backend, shots=1024)  

job_monitor(job)  

 

# Get and print the measurement  

results result = job.result()  

counts = result.get_counts()  

print(counts)  

The provided code example demonstrates how to use Qiskit to interact with IBM 

Quantum Experience, a quantum cloud service, and perform a simple quantum 

computation on a real quantum device or simulator. Let's break down the code step by 

step: 

1. Importing Libraries: 

python 

from qiskit import QuantumCircuit, Aer, execute  

from qiskit.providers import IBMProvider from qiskit.tools.monitor import 

job_monitor  

This section imports the necessary Qiskit modules for creating quantum circuits, 

executing them, and monitoring job progress. It also imports the IBMProvider for 

accessing IBM Quantum Experience. 

2. Loading the IBM Quantum Provider: 

python 

provider = IBMProvider(hub='your_hub', group='your_group', 

project='your_project')  



Here, you should replace 'your_hub', 'your_group', and 'your_project' with your actual 

IBM Quantum Experience account information. This step connects your Qiskit 

environment to the IBM Quantum Experience platform. 

3. Selecting a Quantum Backend: 

python 

backend = provider.get_backend('ibmq_16_melbourne')  

This line selects a quantum backend, which can either be a real quantum device or a 

quantum simulator provided by IBM Quantum Experience. 'ibmq_16_melbourne' refers 

to a specific IBM quantum device. You can change the backend to other available 

options or simulators as needed. 

4. Creating a Quantum Circuit: 

python 

circuit = QuantumCircuit(2)  

circuit.h(0) circuit.cx(0, 1)  

Here, a quantum circuit with two qubits is created. The circuit applies a Hadamard gate 

(H) to the first qubit (qubit 0), which creates a superposition state. Then, it applies a 

controlled-X gate (CX or CNOT) with the first qubit as the control and the second qubit 

(qubit 1) as the target. This operation entangles the qubits. 

5. Executing the Quantum Circuit: 

python 

job = execute(circuit, backend=backend, shots=1024)  

job_monitor(job)  



The execute function is used to run the quantum circuit on the selected backend. In this 

case, the backend variable specifies the IBM Quantum Experience backend. The shots 

parameter indicates how many times the circuit should be executed (here, 1024 times). 

The job_monitor function is used to monitor the progress of the job in real-time. 

6. Getting Measurement Results: 

python 

result = job.result() counts = result.get_counts()  

print(counts)  

After the job is completed, the results are obtained using job.result(). The counts 

variable contains the measurement outcomes, showing how many times each possible 

state was observed during the execution of the circuit. These outcomes are printed to 

the console. 

Overall, this code example demonstrates how to connect to IBM Quantum Experience, 

create and execute a simple quantum circuit, and retrieve measurement results from a 

quantum device or simulator. It serves as a basic template for running quantum 

computations using Qiskit and a quantum cloud service. 

Practical Applications: 

Quantum Algorithm Development: Quantum cloud platforms enable researchers and 

developers to experiment with and develop quantum algorithms on real quantum 

hardware or simulators. 

Quantum Education: Quantum cloud services provide educational resources, allowing 

students and educators to learn about quantum computing and conduct experiments. 

Quantum Research: Researchers can access remote quantum hardware to conduct 

experiments, investigate quantum phenomena, and test novel quantum algorithms. 



Quantum Prototyping: Quantum cloud computing allows businesses to prototype 

quantum solutions for potential applications in optimization, cryptography, and 

materials science. 

Hybrid Quantum-Classical Computing: Quantum cloud platforms facilitate the 

integration of quantum and classical computing for solving real-world problems 

efficiently. 

Quantum cloud computing democratizes access to quantum resources, accelerates 

quantum research and development, and opens up opportunities for innovative 

quantum applications across various domains. 

If you’re not satisfied, CoinTeleGraph does a pretty good job of describing this field 

through their page on Quantum Cloud Computing. 

1.9 QUANTUM CRYPTOGRAPHY 

Dive into the field of quantum cryptography, which exploits the principles of quantum 

mechanics to secure communication channels. Explore concepts like quantum key 

distribution for secure communication. 

Quantum cryptography is a fascinating field that leverages the principles of quantum 

mechanics to provide secure communication channels. It offers a level of security that is 

theoretically unbreakable, as it relies on fundamental quantum properties such as 

entanglement and the no-cloning theorem. Let's dive into quantum cryptography, 

explore its key concepts, provide code examples, and discuss practical applications. 

1.9.1 KEY CONCEPTS IN QUANTUM CRYPTOGRAPHY 

Quantum Key Distribution (QKD): QKD is a fundamental application of quantum 

cryptography. It enables two parties to securely exchange cryptographic keys over a 

https://cointelegraph.com/explained/what-is-quantum-cloud-computing-and-how-does-it-work


potentially insecure communication channel. The most famous QKD protocol is the 

BBM92 (BB84) protocol, which uses the properties of quantum states to detect 

eavesdropping attempts. 

Quantum Entanglement: Entangled particles exhibit correlated behavior, and any 

measurement on one particle instantly affects the other, regardless of the distance 

between them. Entanglement forms the basis for secure key exchange in QKD. 

No-Cloning Theorem: The no-cloning theorem states that it is impossible to create an 

exact copy of an arbitrary unknown quantum state. This theorem ensures the security of 

QKD, as any eavesdropping attempt would introduce errors detectable by the legitimate 

parties. 

1.9.2 QUANTUM KEY DISTRIBUTION (QKD) EXAMPLE 

Let's illustrate the concept of QKD using Qiskit: 

python 

from qiskit import QuantumCircuit, Aer, execute  

from qiskit.visualization import plot_histogram  

from qiskit.providers.aer import QasmSimulator  

from qiskit.extensions import Initialize  

 

# Alice generates random bits and encodes them in quantum states  

alice_bits = "110101"  

alice_circuit = QuantumCircuit(len(alice_bits), len(alice_bits))  

for i, bit in enumerate(alice_bits):  

    if bit == "1": alice_circuit.x(i)  

 

# Bob receives qubits from Alice and measures them  

bob_circuit = QuantumCircuit(len(alice_bits), len(alice_bits))  



for i in range(len(alice_bits)): 

    bob_circuit.measure(i, i)  

 

# Simulate the quantum communication  

simulator = QasmSimulator() combined_ 

circuit = alice_circuit + bob_circuit  

result = execute(combined_circuit, simulator, shots=1).result()  

counts = result.get_counts()  

print("Bob's measurement results:", counts)  

In this example, Alice generates random bits, encodes them in quantum states (0 

represented as |0⟩ and 1 as |1⟩), and sends the qubits to Bob. Bob measures the qubits 

and obtains the results, which should match Alice's bits if there is no eavesdropping. 

The provided code example illustrates the concept of Quantum Key Distribution (QKD) 

using Qiskit. QKD is a cryptographic protocol that allows two parties, Alice and Bob, to 

securely exchange cryptographic keys over a potentially insecure communication 

channel. The code demonstrates a simplified QKD scenario between Alice and Bob. Let's 

break down the code step by step: 

1. Importing Libraries: 

python 

from qiskit import QuantumCircuit, Aer, execute  

from qiskit.visualization import plot_histogram  

from qiskit.providers.aer import QasmSimulator  

from qiskit.extensions import Initialize  

This section imports the necessary Qiskit modules for creating quantum circuits, 

visualizing measurement results, simulating quantum executions, and initializing qubits 

in specific states. 



2. Alice's Qubit Preparation: 

python 

alice_bits = "110101"  

alice_circuit = QuantumCircuit(len(alice_bits), len(alice_bits))  

for i, bit in enumerate(alice_bits):  

    if bit == "1":  

        alice_circuit.x(i)  

Alice generates random bits represented by the alice_bits string (e.g., "110101"). For 

each bit, if it is "1," she applies an X-gate (bit-flip gate) to the corresponding qubit in her 

quantum circuit. This step encodes her random bits into quantum states. 

3. Bob's Qubit Measurement: 

python 

bob_circuit = QuantumCircuit(len(alice_bits), len(alice_bits))  

for i in range(len(alice_bits)):  

    bob_circuit.measure(i, i)  

Bob prepares an empty quantum circuit with the same number of qubits as Alice's. He 

then measures each qubit in his circuit. Bob's qubits are initially in the standard |0⟩ state, 

so the measurement will collapse the qubits to either |0⟩ or |1⟩ states. 

4. Simulating Quantum Communication: 

python 

simulator = QasmSimulator()  

combined_circuit = alice_circuit + bob_circuit  

result = execute(combined_circuit, simulator, shots=1).result()  



To simulate the quantum communication between Alice and Bob, a quantum simulator 

(QasmSimulator) is used. The quantum circuits of Alice and Bob are combined into 

combined_circuit, representing their interactions. The execute function runs the 

combined circuit on the simulator, with shots=1 indicating a single execution. 

5. Getting and Printing Measurement Results: 

python 

counts = result.get_counts()  

print("Bob's measurement results:", counts)  

After executing the combined circuit, the measurement outcomes are obtained using 

the get_counts method. These outcomes represent the final state of Bob's qubits after 

measurement. The results are printed to the console. 

In this simplified example, Alice prepares random bits, encodes them into quantum 

states, and sends them to Bob. Bob measures the qubits to obtain the random bits Alice 

encoded. This process is a basic representation of QKD, where the quantum properties 

of qubits ensure the security of the key exchange. In practice, QKD protocols are more 

sophisticated and provide higher levels of security against eavesdropping. 

Practical Applications of Quantum Cryptography 

Secure Communication: Quantum cryptography ensures the security of 

communication channels, making it impossible for eavesdroppers to intercept or 

decipher encrypted messages. 

Financial Transactions: Quantum cryptography can secure financial transactions, 

protect sensitive data, and prevent unauthorized access to financial systems. 

Government and Military Communications: Governments and military organizations 

can use quantum cryptography to secure classified and sensitive communications. 



Healthcare Data: Medical institutions can protect patient data and medical records 

using quantum cryptography to prevent data breaches. 

IoT Security: Quantum cryptography can enhance the security of Internet of Things 

(IoT) devices and networks, safeguarding critical infrastructure and smart cities. 

Quantum cryptography represents a paradigm shift in data security and encryption, 

offering unprecedented levels of security in an increasingly interconnected world. It has 

the potential to revolutionize how data is protected and transmitted across various 

domains. 

 

1.10 QUANTUM MACHINE LEARNING (QML) 

Investigate the intersection of quantum computing and machine learning. Explore 

quantum machine learning algorithms and how quantum computers may provide 

advantages in certain types of machine learning tasks. 

Quantum Machine Learning (QML) is a rapidly growing interdisciplinary field that 

combines quantum computing and machine learning techniques. It explores how 

quantum computers can potentially outperform classical computers in solving specific 

machine learning tasks. In this expansion, we'll delve into QML, discuss key concepts, 

provide code examples using Qiskit, and explore practical applications. 

1.10.1 KEY CONCEPTS IN QUANTUM MACHINE LEARNING 

Quantum Data Representation: QML introduces quantum data encoding techniques, 

such as quantum feature maps, to represent classical data in a quantum state. These 

quantum states are then processed by quantum algorithms. 



Quantum Algorithms: Quantum algorithms like the Quantum Support Vector Machine 

(QSVM), Quantum Neural Networks, and Quantum Principal Component Analysis (PCA) 

are designed to perform machine learning tasks more efficiently on quantum 

computers. 

Quantum Speedup: Quantum computers have the potential to provide a speedup for 

specific machine learning tasks, particularly those involving large datasets and complex 

optimization problems. 

1.10.2 QUANTUM MACHINE LEARNING ALGORITHMS EXAMPLE 

(QSVM) 

Let's explore a basic example of Quantum Support Vector Machine (QSVM) using Qiskit 

Aqua, an extended library for quantum computing: 

python 

from qiskit.aqua import QuantumInstance  

from qiskit.aqua.algorithms import QSVM  

from qiskit.aqua.components.multiclass_extensions import AllPairs  

 

# Sample data and labels  

training_data = [[0.5, 0.2], [0.2, 0.6], [0.8, 0.9], [0.7, 0.1]]  

labels = [0, 1, 1, 0]  

 

# Create a QSVM instance  

qsvm = QSVM(training_data, labels, 

quantum_instance=QuantumInstance(backend=Aer.get_backend('qasm_simulat

or')))  

 

# Run the QSVM algorithm  



result = 

qsvm.run(quantum_instance=QuantumInstance(backend=Aer.get_backend('qas

m_simulator')))  

 

# Get the predicted labels  

predicted_labels = qsvm.predict([0.65, 0.3])  

print("Predicted label:", predicted_labels)  

The provided code example demonstrates the use of Quantum Support Vector Machine 

(QSVM) for binary classification using Qiskit Aqua. QSVM is a quantum algorithm that 

can be used for machine learning tasks, particularly for solving binary classification 

problems. Let's break down the code step by step: 

1. Importing Libraries: 

python 

from qiskit.aqua import QuantumInstance  

from qiskit.aqua.algorithms import QSVM  

from qiskit.aqua.components.multiclass_extensions import AllPairs  

This section imports the necessary Qiskit Aqua modules for creating a quantum 

instance, setting up the QSVM algorithm, and importing a multiclass extension for 

binary classification. 

2. Defining Training Data and Labels: 

python 

training_data = [[0.5, 0.2], [0.2, 0.6], [0.8, 0.9], [0.7, 0.1]]  

labels = [0, 1, 1, 0]  



Here, you define the training data, represented as a list of feature vectors 

(training_data) and their corresponding labels (labels). In this example, you have two 

features for each data point and binary labels (0 or 1) indicating the class. 

3. Creating a QSVM Instance: 

python 

qsvm = QSVM(training_data, labels, 

quantum_instance=QuantumInstance(backend=Aer.get_backend('qasm_simulat

or')))  

You create an instance of the QSVM algorithm by providing the training data and labels. 

Additionally, you specify the quantum instance to use for the quantum computations. In 

this case, the qasm_simulator backend is used, which is a quantum simulator provided 

by Qiskit for testing and debugging. 

4. Running the QSVM Algorithm: 

python 

result = 

qsvm.run(quantum_instance=QuantumInstance(backend=Aer.get_backend('qas

m_simulator')))  

The run method of the QSVM algorithm is called to train the QSVM model on the 

provided training data. The quantum simulator is used to perform the quantum 

computations. After training, the model is ready to make predictions. 

5. Making Predictions: 

python 

predicted_labels = qsvm.predict([0.65, 0.3])  



You can use the trained QSVM model to make predictions for new data points. In this 

example, you provide a feature vector [0.65, 0.3], and the QSVM algorithm predicts the 

corresponding class label. 

6. Printing the Predicted Label: 

python 

print("Predicted label:", predicted_labels)  

The predicted label obtained from the QSVM model is printed to the console. 

In summary, this code example demonstrates how to use Qiskit Aqua's QSVM algorithm 

for binary classification. It starts with defining training data and labels, creates a QSVM 

instance, trains the model, and uses it to predict the class label for a new data point. 

QSVM is one of the quantum machine learning algorithms that leverage quantum 

computing's potential to solve specific machine learning tasks efficiently. 

Practical Applications: 

Quantum Machine Learning for Data Analysis: QML can provide advantages in 

processing and analyzing large datasets, making it valuable in fields like finance, 

healthcare, and climate modeling. 

Optimization Problems: QML can be used for solving complex optimization problems 

encountered in supply chain management, logistics, and portfolio optimization. 

Quantum Neural Networks: Quantum neural networks, such as the Quantum 

Variational Circuit (QVC), can be applied to machine learning tasks like image 

classification and natural language processing. 

Quantum Chemistry: QML is used to simulate molecular structures, aiding drug 

discovery and materials science by predicting chemical properties accurately. 



Pattern Recognition: QML can enhance pattern recognition tasks, making it useful in 

image recognition, speech analysis, and autonomous driving. 

Quantum machine learning is an exciting field with the potential to transform various 

industries by solving complex problems more efficiently than classical counterparts. It is 

an area of active research, and as quantum computers continue to advance, their impact 

on machine learning is expected to grow significantly. 

 

FURTHER LEARNING 

Here are some courses and places to learn more about Quantum Computing and Qiskit: 

Free Online Courses: 

• IBM Quantum Learning: Offered by IBM, this platform provides a variety of 
courses on the fundamentals of quantum computing and Qiskit, ranging from 
beginner to advanced levels. It also includes tutorials, workshops, and 
challenges. 

  

de.quantum-computing.ibm.com 

IBM Quantum Learning Platform 

• edX Courses: Several universities offer quantum computing courses on 
edX, such as "Quantum Computer Systems Design I: Intro to Quantum 
Computation and Programming" by the University of Chicago and "Introduction to 
Quantum Computing" by Delft University of Technology. 

file:///C:/Users/craig/Desktop/Top%2010%20Emerging%20Coding%20And%20Software%20Trends%202024/de.quantum-computing.ibm.com
file:///C:/Users/craig/Desktop/Top%2010%20Emerging%20Coding%20And%20Software%20Trends%202024/de.quantum-computing.ibm.com


  

www.edunext.co 

edX platform 

• Udacity Nanodegree: Udacity's "Intro to Quantum Computing Nanodegree" is a 
comprehensive program that teaches you the fundamentals of quantum 
mechanics, quantum algorithms, and Qiskit programming. 

  

www.udacity.com 

Udacity platform 

• Coursera Courses: Several universities offer quantum computing courses on 
Coursera, such as "Quantum Machine Learning" by the University of Toronto and 
"Quantum Computing for Everyone" by IBM. 

http://www.edunext.co/
http://www.udacity.com/


 

Coursera platform 

Books and Textbooks: 

• Quantum Computing: A Gentle Introduction by Nielsen and Chuang: This 
book is a classic textbook that provides a comprehensive introduction to quantum 
computing. 

 

www.amazon.com 

Quantum Computing: A Gentle Introduction book 

• Qiskit Textbook: This free, open-source textbook is a good resource for learning 
Qiskit programming. 

http://www.amazon.com/


 

medium.com 

Qiskit Textbook 

• Quantum Computing for Everyone by Chris Ferrie: This book is a beginner-
friendly introduction to quantum computing. 

 

www.amazon.com 

Quantum Computing for Everyone book 

Other Resources: 

• Qiskit Community: The Qiskit community is a great resource for learning and 
asking questions about Qiskit. You can join the community forum or online chat 
to connect with other learners and experts. 

http://www.medium.com/
http://www.medium.com/
http://www.amazon.com/


 

github.com 

Qiskit Community 

• Quantum Inspire: Quantum Inspire is a platform that allows you to run quantum 
experiments in the cloud. This is a great way to get hands-on experience with 
quantum computing. 

 

qutech.nl 

Quantum Inspire platform 

• Quantum Open Source Foundation: The Quantum Open Source Foundation is 
a non-profit organization that supports the development of open-source quantum 
software. They provide a variety of resources, including 
documentation, tutorials, and code examples. 

https://github.com/qiskit-community/lindbladmpo/pulls
https://github.com/qiskit-community/lindbladmpo/pulls
https://qutech.nl/2020/11/25/new-grant-to-bring-quantum-computing-closer-to-its-future-users-through-quantum-inspire-platform/
https://qutech.nl/2020/11/25/new-grant-to-bring-quantum-computing-closer-to-its-future-users-through-quantum-inspire-platform/


 

www.linkedin.com 

Quantum Open Source Foundation logo 

• Industry Events and Conferences: Attending industry events and conferences 
is a great way to learn about the latest developments in quantum 
computing. Some popular events include the Qiskit Quantum Summit, IEEE 
Quantum Week, and the APS March Meeting. 

 

 

http://www.linkedin.com/

